2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison Of The Gut Microbiota In Different Age Groups In China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging is now the most profound risk factor for almost all non-communicable diseases. Studies have shown that probiotics play a specific role in fighting aging. We used metagenomic sequencing to study the changes in gut microbes in different age groups and found that aging had the most significant effect on subjects’ gut microbe structure. Our study divided the subjects (n=614) into two groups by using 50 years as the age cut-off point for the grouping. Compared with the younger group, several species with altered abundance and specific functional pathways were found in the older group. At the species level, the abundance of Bacteroides fragilis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, and Parabacteroides merdae were increased in older individuals. They were positively correlated to the pathways responsible for lipopolysaccharide (LPS) biosynthesis and the degradation of short-chain fatty acids (SCFAs). On the contrary, the levels of Barnesiella intestinihominis, Megamonas funiformis, and Subdoligranulum unclassified were decreased in the older group, which negatively correlated with the above pathways (p-value<0.05). Functional prediction revealed 92 metabolic pathways enriched in the older group significantly higher than those in the younger group (p-value<0.05), especially pathways related to LPS biosynthesis and the degradation of SCFAs. Additionally, we established a simple non-invasive model of aging, nine species ( Bacteroides fragilis, Barnesiella intestinihominis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, Megamonas funiformis, Parabacteroides merdae, and Subdoligranulum unclassified) were selected to construct the model. The area under the receiver operating curve (AUC) of the model implied that supplemented probiotics might influence aging. We discuss the features of the aging microbiota that make it more amenable to pre-and probiotic interventions. We speculate these metabolic pathways of gut microbiota can be associated with the immune status and inflammation of older adults. Health interventions that promote a diverse microbiome could influence the health of older adults.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease.

            The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                25 July 2022
                2022
                : 12
                : 877914
                Affiliations
                [1] 1 Health Management Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
                [2] 2 College of Public Health, Zhengzhou University , Zhengzhou, China
                Author notes

                Edited by: Marjorie Pizarro-Guajardo, Texas A&M University, United States

                Reviewed by: Eugenia Bezirtzoglou, Democritus University of Thrace, Greece; Selvasankar Murugesan, Sidra Medicine, Qatar; Daniel A. Medina, Universidad San Sebastián, Chile

                *Correspondence: Suying Ding, fccdingsy@ 123456zzu.edu.cn

                †These authors have contributed equally to this work

                This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2022.877914
                9359670
                35959379
                8472e3f5-4a38-45b0-952d-d67c58596ea8
                Copyright © 2022 Yan, Qin, Yan, Chen, Yang, Li, Gao and Ding

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 February 2022
                : 23 June 2022
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 46, Pages: 12, Words: 5164
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                aging,50 years old,gut microbiota,metagenomics,metabolic pathways

                Comments

                Comment on this article