8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993–2005

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          The impact of dust storms on human health has been studied in the context of Asian, Saharan, Arabian, and Australian storms, but there has been no recent population-level epidemiological research on the dust storms in North America. The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century.

          Objectives:

          We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005.

          Methods:

          Dust storm incidence data, including date and approximate location, are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993–2005 were acquired from the National Center for Health Statistics. Distributed lag conditional logistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-accidental).

          Results:

          We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% CI: 1.6, 13.5; p = 0.011) and 6.7% (95% CI: 1.1, 12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% CI: 0.4, 5.1; p = 0.023) over lags 0–5 compared with referent days. Significant associations with non-accidental mortality were estimated for California (lag 2 and 0–5 day) and Arizona (lag 3), for cardiovascular mortality in the United States (lag 2) and Arizona (lag 3), and for other non-accidental mortality in California (lags 1–3 and 0–5).

          Conclusions:

          Dust storms are associated with increases in lagged non-accidental and cardiovascular mortality.

          Citation:

          Crooks JL, Cascio WE, Percy MS, Reyes J, Neas LM, Hilborn ED. 2016. The association between dust storms and daily non-accidental mortality in the United States, 1993–2005. Environ Health Perspect 124:1735–1743; http://dx.doi.org/10.1289/EHP216

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

          Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            R: A language and enviornment for statistical computing

            (2010)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies

              Background Although numerous studies have demonstrated links between particulate matter (PM) and adverse health effects, the chemical components of the PM mixture that cause injury are unknown. Objectives This work characterizes spatial and temporal variability of PM2.5 (PM with aerodynamic diameter < 2.5 μm) components in the United States; our objective is to identify components for assessment in epidemiologic studies. Methods We constructed a database of 52 PM2.5 component concentrations for 187 U.S. counties for 2000–2005. First, we describe the challenges inherent to analysis of a national PM2.5 chemical composition database. Second, we identify components that contribute substantially to and/or co-vary with PM2.5 total mass. Third, we characterize the seasonal and regional variability of targeted components. Results Strong seasonal and geographic variations in PM2.5 chemical composition are identified. Only seven of the 52 components contributed ≥ 1% to total mass for yearly or seasonal averages [ammonium (NH4 +), elemental carbon (EC), organic carbon matter (OCM), nitrate (NO3 −), silicon, sodium (Na+), and sulfate (SO4 2−)]. Strongest correlations with PM2.5 total mass were with NH4 + (yearly), OCM (especially winter), NO3 − (winter), and SO4 2− (yearly, spring, autumn, and summer), with particularly strong correlations for NH4 + and SO4 2− in summer. Components that co-varied with PM2.5 total mass, based on daily detrended data, were NH4 +, SO4 2− , OCM, NO3 2−, bromine, and EC. Conclusions The subset of identified PM2.5 components should be investigated further to determine whether their daily variation is associated with daily variation of health indicators, and whether their seasonal and regional patterns can explain the seasonal and regional heterogeneity in PM10 (PM with aerodynamic diameter < 10 μm) and PM2.5 health risks.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                29 April 2016
                November 2016
                : 124
                : 11
                : 1735-1743
                Affiliations
                [1 ]Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
                [2 ]Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
                [3 ]Department of Geological Sciences, and
                [4 ]Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
                Author notes
                []Address correspondence to J.L. Crooks, Division of Biostatistics and Bioinformatics, National Jewish Health, 1400 Jackson St., Denver, CO 80206-2761 USA. Telephone: (303) 398-1543. E-mail: CrooksJ@ 123456njhealth.org
                Article
                EHP216
                10.1289/EHP216
                5089887
                27128449
                84794f5d-09e5-4e24-9424-752ab40e9143

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 9 July 2015
                : 16 November 2015
                : 18 April 2016
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article