20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Shading effect on long-term outdoor thermal comfort

      , ,
      Building and Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment.

          P Hoppe (1999)
          With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modelling radiation fluxes in simple and complex environments--application of the RayMan model.

            The most important meteorological parameter affecting the human energy balance during sunny weather conditions is the mean radiant temperature T(mrt). It considers the uniform temperature of a surrounding surface giving off blackbody radiation, which results in the same energy gain of a human body given the prevailing radiation fluxes. This energy gain usually varies considerably in open space conditions. In this paper, the model 'RayMan', used for the calculation of short- and long-wave radiation fluxes on the human body, is presented. The model, which takes complex urban structures into account, is suitable for several applications in urban areas such as urban planning and street design. The final output of the model is, however, the calculated T(mrt), which is required in the human energy balance model, and thus also for the assessment of the urban bioclimate, with the use of thermal indices such as predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*). The model has been developed based on the German VDI-Guidelines 3789, Part II (environmental meteorology, interactions between atmosphere and surfaces; calculation of short- and long-wave radiation) and VDI-3787 (environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: climate). The validation of the results of the RayMan model agrees with similar results obtained from experimental studies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Thermal adaptation in the built environment: a literature review

                Bookmark

                Author and article information

                Journal
                Building and Environment
                Building and Environment
                Elsevier BV
                03601323
                January 2010
                January 2010
                : 45
                : 1
                : 213-221
                Article
                10.1016/j.buildenv.2009.06.002
                84982e35-f7d5-44ce-b5b8-e5ed328e5774
                © 2010

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article