18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          The linear-quadratic formula and progress in fractionated radiotherapy.

          J. Fowler (1989)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature.

            The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors.

              Peptide receptor radionuclide therapy (PRRT) with (90)Y and (177)Lu provides objective responses in neuroendocrine tumours, and is well tolerated with moderate toxicity. We aimed to identify clinical parameters predictive of long-term renal and haematological toxicity (myelodysplastic syndrome and acute leukaemia).
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                10 July 2015
                September 2015
                : 5
                : 3
                : 296-317
                Affiliations
                Department of Medical Radiation Physics, Lund University, 221 85 Lund, Sweden; E-Mail: katarina.sjogreen_gleisner@ 123456med.lu.se
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: michael.ljungberg@ 123456med.lu.se ; Tel.: +46-46-173656; Fax: +46-46-178540.
                Article
                diagnostics-05-00296
                10.3390/diagnostics5030296
                4665601
                26854156
                84a09506-dd58-4125-8a29-8cadfae0f1a2
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 June 2015
                : 01 July 2015
                Categories
                Review

                dosimetry,monte carlo,spect,hybrid,ct,absorbed dose,therapy,reconstruction,quantitation,activity

                Comments

                Comment on this article