3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Temporal Clustering Algorithm for Achieving the trade-off between the User Experience and the Equipment Economy in the Context of IoT

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present here the Temporal Clustering Algorithm (TCA), an incremental learning algorithm applicable to problems of anticipatory computing in the context of the Internet of Things. This algorithm was tested in a specific prediction scenario of consumption of an electric water dispenser typically used in tropical countries, in which the ambient temperature is around 30-degree Celsius. In this context, the user typically wants to drinking iced water therefore uses the cooler function of the dispenser. Real and synthetic water consumption data was used to test a forecasting capacity on how much energy can be saved by predicting the pattern of use of the equipment. In addition to using a small constant amount of memory, which allows the algorithm to be implemented at the lowest cost, while using microcontrollers with a small amount of memory (less than 1Kbyte) available on the market. The algorithm can also be configured according to user preference, prioritizing comfort, keeping the water at the desired temperature longer, or prioritizing energy savings. The main result is that the TCA achieved energy savings of up to 40% compared to the conventional mode of operation of the dispenser with an average success rate higher than 90% in its times of use.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          The expectation-maximization algorithm

          T.K. Moon (1996)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Time-series clustering – A decade review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laws of population growth

              An important issue in the study of cities is defining a metropolitan area, because different definitions affect conclusions regarding the statistical distribution of urban activity. A commonly employed method of defining a metropolitan area is the Metropolitan Statistical Areas (MSAs), based on rules attempting to capture the notion of city as a functional economic region, and it is performed by using experience. The construction of MSAs is a time-consuming process and is typically done only for a subset (a few hundreds) of the most highly populated cities. Here, we introduce a method to designate metropolitan areas, denoted "City Clustering Algorithm" (CCA). The CCA is based on spatial distributions of the population at a fine geographic scale, defining a city beyond the scope of its administrative boundaries. We use the CCA to examine Gibrat's law of proportional growth, which postulates that the mean and standard deviation of the growth rate of cities are constant, independent of city size. We find that the mean growth rate of a cluster by utilizing the CCA exhibits deviations from Gibrat's law, and that the standard deviation decreases as a power law with respect to the city size. The CCA allows for the study of the underlying process leading to these deviations, which are shown to arise from the existence of long-range spatial correlations in population growth. These results have sociopolitical implications, for example, for the location of new economic development in cities of varied size.
                Bookmark

                Author and article information

                Journal
                30 July 2019
                Article
                1907.13246
                84a1fa54-6e91-4d9a-a9bc-cc20edc742b0

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                9 pages, 2 figures
                cs.LG stat.ML

                Machine learning,Artificial intelligence
                Machine learning, Artificial intelligence

                Comments

                Comment on this article