1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Prediction of Earthquake Ground Shaking Intensity Using Raw Waveform Data and a Convolutional Neural Network

      Preprint

      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study describes a deep convolutional neural network (CNN) based technique for the prediction of intensity measurements (IMs) of ground shaking. The input data to the CNN model consists of multistation 3C broadband and accelerometric waveforms recorded during the 2016 Central Italy earthquake sequence for M \(\ge\) 3.0. We find that the CNN is capable of predicting accurately the IMs at stations far from the epicenter and that have not yet recorded the maximum ground shaking when using a 10 s window starting at the earthquake origin time. The CNN IM predictions do not require previous knowledge of the earthquake source (location and magnitude). Comparison between the CNN model predictions and the predictions obtained with Bindi et al. (2011) GMPE (which require location and magnitude) has shown that the CNN model features similar error variance but smaller bias. Although the technique is not strictly designed for earthquake early warning, we found that it can provide useful estimates of ground motions within 15-20 sec after earthquake origin time depending on various setup elements (e.g., times for data transmission, computation, latencies). The technique has been tested on raw data without any initial data pre-selection in order to closely replicate real-time data streaming. When noise examples were included with the earthquake data, the CNN was found to be stable predicting accurately the ground shaking intensity corresponding to the noise amplitude.

          Related collections

          Author and article information

          Journal
          17 February 2020
          Article
          2002.06893
          84a4c5d3-155a-47c8-982a-194150beb189

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          29 pages, 9 figures
          physics.geo-ph

          Geophysics

          Comments

          Comment on this article