14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic frameworks for luminescence thermometry

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe the recent progress made in luminescent MOF thermometers, and especially highlight the development of dual-emitting ratiometric thermometers.

          Abstract

          Metal–organic frameworks (MOFs) hold great promise for developing various types of luminescent sensors due to their remarkable structural diversity and tunable luminescence properties. In the last few years, utilizing luminescent MOFs to explore temperature sensing has gained intense attention. In this feature article, after the general description of luminescence thermometry, we have summarized the recent progress made in luminescent MOF thermometers, with particular emphasis on the dual-emitting MOFs that effectively illustrate the self-referencing temperature measurement based on the intensity ratios of two separate transitions.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: not found
          • Article: not found

          Metal-organic framework materials as chemical sensors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent metal-organic frameworks for chemical sensing and explosive detection.

            Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Luminescent metal-organic frameworks.

              Metal-organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chemical Communications
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2015
                2015
                : 51
                : 35
                : 7420-7431
                Article
                10.1039/C5CC00718F
                84b6f280-e1b5-443f-a002-f9cd7529b1d0
                © 2015
                History

                Comments

                Comment on this article