60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exit from mitosis in budding yeast requires a group of essential proteins--including the GTPase Tem1 and the protein phosphatase Cdc14--that downregulate cyclin-dependent kinase activity. We identified a mutation, net1-1, that bypasses the lethality of tem1 delta. NET1 encodes a novel protein, and mass spectrometric analysis reveals that it is a key component of a multifunctional complex, denoted RENT (for regulator of nucleolar silencing and telophase), that also contains Cdc14 and the silencing regulator Sir2. From G1 through anaphase, RENT localizes to the nucleolus, and Cdc14 activity is inhibited by Net1. In late anaphase, Cdc14 dissociates from RENT, disperses throughout the cell in a Tem1-dependent manner, and ultimately triggers mitotic exit. Nucleolar sequestration may be a general mechanism for the regulation of diverse biological processes.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex.

          We have reconstituted the ubiquitination pathway for the Cdk inhibitor Sic1 using recombinant proteins. Skp1, Cdc53, and the F-box protein Cdc4 form a complex, SCFCdc4, which functions as a Sic1 ubiquitin-ligase (E3) in combination with the ubiquitin conjugating enzyme (E2) Cdc34 and E1. Cdc4 assembled with Skp1 functions as the receptor that selectively binds phosphorylated Sic1. Grr1, an F-box protein involved in Cln destruction, forms complexes with Skp1 and Cdc53 and binds phosphorylated Cln1 and Cln2, but not Sic1. Because the constituents of the SCF complex are members of protein families, SCFCdc4 is likely to serve as the prototype for a large class of E3s formed by combinatorial interactions of related family members. SCF complexes couple protein kinase signaling pathways to the control of protein abundance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry.

            Molecular analysis of complex biological structures and processes increasingly requires sensitive methods for protein sequencing. Electrospray mass spectrometry has been applied to the high-sensitivity sequencing of short peptides, but technical difficulties have prevented similar success with gel-isolated proteins. Here we report a simple and robust technique for the sequencing of proteins isolated by polyacrylamide gel electrophoresis, using nano-electrospray tandem mass spectrometry. As little as 5 ng protein starting material on Coomassie- or silver-stained gels can be sequenced. Multiple-sequence stretches of up to 16 amino acids are obtained, which identify the protein unambiguously if already present in databases or provide information to clone the corresponding gene. We have applied this method to the sequencing and cloning of a protein which inhibits the proliferation of capillary endothelial cells in vitro and thus may have potential antiangiogenic effects on solid tumours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.

              Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs) by an unknown mechanism. We show that the Cdc14 phosphatase triggers mitotic exit by three parallel mechanisms, each of which inhibits Cdk activity. Cdc14 dephosphorylates Sic1, a Cdk inhibitor, and Swi5, a transcription factor for SIC1, and induces degradation of mitotic cyclins, likely by dephosphorylating the activator of mitotic cyclin degradation, Cdh1/Hct1. Feedback between these pathways may lead to precipitous collapse of mitotic CDK activity and help coordinate exit from mitosis.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                April 1999
                April 1999
                : 97
                : 2
                : 233-244
                Article
                10.1016/S0092-8674(00)80733-3
                10219244
                84b7fc23-d0fa-43e7-9703-26f3fa592d01
                © 1999

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article