44
views
0
recommends
+1 Recommend
3 collections
    1
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving Prediction Accuracy Using Multi-allelic Haplotype Prediction and Training Population Optimization in Wheat

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of haplotypes may improve the accuracy of genomic prediction over single SNPs because haplotypes can better capture linkage disequilibrium and genomic similarity in different lines and may capture local high-order allelic interactions. Additionally, prediction accuracy could be improved by portraying population structure in the calibration set. A set of 383 advanced lines and cultivars that represent the diversity of the University of Minnesota wheat breeding program was phenotyped for yield, test weight, and protein content and genotyped using the Illumina 90K SNP Assay. Population structure was confirmed using single SNPs. Haplotype blocks of 5, 10, 15, and 20 adjacent markers were constructed for all chromosomes. A multi-allelic haplotype prediction algorithm was implemented and compared with single SNPs using both k-fold cross validation and stratified sampling optimization. After confirming population structure, the stratified sampling improved the predictive ability compared with k-fold cross validation for yield and protein content, but reduced the predictive ability for test weight. In all cases, haplotype predictions outperformed single SNPs. Haplotypes of 15 adjacent markers showed the best improvement in accuracy for all traits; however, this was more pronounced in yield and protein content. The combined use of haplotypes of 15 adjacent markers and training population optimization significantly improved the predictive ability for yield and protein content by 14.3 (four percentage points) and 16.8% (seven percentage points), respectively, compared with using single SNPs and k-fold cross validation. These results emphasize the effectiveness of using haplotypes in genomic selection to increase genetic gain in self-fertilized crops.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          TASSEL: software for association mapping of complex traits in diverse samples.

          Association analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure. For result interpretation, the program allows for linkage disequilibrium statistics to be calculated and visualized graphically. Database browsing and data importation is facilitated by integrated middleware. Other features include analyzing insertions/deletions, calculating diversity statistics, integration of phenotypic and genotypic data, imputing missing data and calculating principal components.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient methods to compute genomic predictions.

            Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously. Algorithms were derived and computer programs tested with simulated data for 2,967 bulls and 50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding coefficients required accurate estimates of allele frequencies in the base population. Linear model predictions of breeding values were computed by 3 equivalent methods: 1) iteration for individual allele effects followed by summation across loci to obtain estimated breeding values, 2) selection index including a genomic relationship matrix, and 3) mixed model equations including the inverse of genomic relationships. A blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects. Reliability of predicted net merit for young bulls was 63% compared with 32% using the traditional relationship matrix. Nonlinear predictions were also computed using iteration on data and nonlinear regression on marker deviations; an additional (about 3%) gain in reliability for young bulls increased average reliability to 66%. Computing times increased linearly with number of genotypes. Estimation of allele frequencies required 2 processor days, and genomic predictions required <1 d per trait, and traits were processed in parallel. Information from genotyping was equivalent to about 20 daughters with phenotypic records. Actual gains may differ because the simulation did not account for linkage disequilibrium in the base population or selection in subsequent generations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

              Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                05 May 2020
                July 2020
                : 10
                : 7
                : 2265-2273
                Affiliations
                [* ]Department of Plant Pathology,
                [ ]Department of Animal Science, and
                [ ]Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
                Author notes
                [1 ]Corresponding author: 1991 Upper Buford Circle, St. Paul, MN 55108. E-mail: ander319@ 123456umn.edu
                Author information
                http://orcid.org/0000-0003-3212-9231
                http://orcid.org/0000-0002-4592-7120
                http://orcid.org/0000-0003-4655-6517
                Article
                GGG_401165
                10.1534/g3.120.401165
                7341132
                32371453
                84c7fffa-1fdd-4db4-9c3e-c1ae7eda3dac
                Copyright © 2020 Sallam et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 February 2020
                : 29 April 2020
                Page count
                Figures: 3, Tables: 2, Equations: 3, References: 62, Pages: 9
                Categories
                Genomic Prediction

                Genetics
                genomic selection,wheat,plant breeding,training population optimization,haplotype prediction,quantitative trait loci,genpred,shared data resources

                Comments

                Comment on this article