1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Angiotensin II and canonical transient receptor potential-6 activation stimulate release of a signal transducer and activator of transcription 3-activating factor from mouse podocytes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have shown that the transcription factor signal transducer and activator of transcription-3 (STAT3) in podocytes plays an important role in progression of HIV nephropathy and in collapsing forms of glomerulonephritis. Here, we have observed that application of 100 nM angiotensin II (Ang II) to cultured podocytes for 6-24 hours causes a marked increase in the phosphorylation of STAT3 on tyrosine Y705 but has no effect on phosphorylation at serine S727. By contrast, Ang II treatment of short periods (20-60 minutes) caused a small but consistent suppression of tyrosine phosphylation of STAT3. A similar biphasic effect was seen after treatment with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), an agent that causes activation of Ca(2+)-permeable canonical transient receptor potential-6 (TRPC6) channels in podocytes. The stimulatory effects of Ang II on STAT3 phosphorylation were abolished by small-interfering RNA knockdown of TRPC6 and also by inhibitors of the Ca(2+)-dependent downstream enzymes calcineurin and Ca(2+)-calmodulin-dependent protein kinase II. The stimulatory effects of Ang II appear to be mediated by secretion and accumulation of an unknown factor into the surrounding medium, as they are no longer detected when medium is replaced every 2 hours even if Ang II is continuously present. By contrast, the inhibitory effect of Ang II on STAT3 phosphorylation persists with frequent medium changes. Experiments with neutralizing and inhibitory antibodies suggest that the STAT3 stimulatory factor secreted from podocytes is not interleukin-6, but also suggest that this factor exerts its actions through a receptor system that requires glycoprotein 130.

          Related collections

          Author and article information

          Journal
          Mol. Pharmacol.
          Molecular pharmacology
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          1521-0111
          0026-895X
          Aug 2014
          : 86
          : 2
          Affiliations
          [1 ] Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas.
          [2 ] Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas sdryer@uh.edu.
          Article
          mol.114.092536
          10.1124/mol.114.092536
          24850910
          84efb0fa-de9f-48c9-a1dd-a9aef7db56ef
          History

          Comments

          Comment on this article