16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histological analysis of arteriovenous anastomosis-like vessels established in the corpus luteum of cows during luteolysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The mechanisms regulating the function and regression of the corpus luteum (CL) have not yet been elucidated in detail. The regressed CL of cows was previously reported to be filled with unusual vessels like arteriovenous anastomosis (AVA); however how these vessels are being established during luteolysis remains unknown.

          Methods

          The bovine CL at different luteal stages and regressing bovine CL induced by prostaglandin F (PGF) were histologically analyzed using light and electron microscopic levels. The changes in mRNA expression of genes encoding α-smooth muscle actin (SMA; Acta2) and transforming growth factor β1 ( Tgfb1) in luteal tissues were analyzed by quantitative RT-PCR.

          Results

          AVA-like vessels appeared in the regressed CL with a diameter less than 1.5 cm in which no functional luteal cells and macrophages were observed. Epithelioid cells in the AVA-like vessel wall were immunoreactive for SMA, and the lumen of the vessels were narrow. Immunoreaction for SMA was found in the tunica media of typical arteries and arterioles, and pericytes around capillary vessel. Cells with elongated cytoplasmic processes ―resident fibroblasts expressing vimentin― distributed in the CL parenchyma without any association with blood vessels are also immunoreactive for SMA, and accumulated around arteries and arterioles during the late-luteal stage. In the regressed CL, walls of arteries and arterioles consisted of more than two layers of epithelioid cells positive for both SMA and desmin, suggesting that they are myofibroblasts transformed from fibroblasts. The percentage of the area positive for SMA and the mRNA expression of Acta2 were significantly increased in the regressed CL; however, they did not alter when a luteolytic dose of PGF was injected in vivo and collected within 24 h after the injection. On the other hand, Tgfb1, a known regulator for myofibroblast transformation, was significantly increased in PGF-induced regressing CL as well as in the CL during the late-luteal stage.

          Conclusions

          SMA-positive myofibroblasts accumulates around the arteries and arterioles to form AVA-like vessels during luteolysis in cows. PGF indirectly regulates myofibroblast transformation through enhancing the expression of TGFβ1. These peculiar AVA-like vessels may be involved in the regulation of blood flow in the bovine CL during luteolysis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Luteolysis: a neuroendocrine-mediated event.

          In many nonprimate mammalian species, cyclical regression of the corpus luteum (luteolysis) is caused by the episodic pulsatile secretion of uterine PGF2alpha, which acts either locally on the corpus luteum by a countercurrent mechanism or, in some species, via the systemic circulation. Hysterectomy in these nonprimate species causes maintenance of the corpora lutea, whereas in primates, removal of the uterus does not influence the cyclical regression of the corpus luteum. In several nonprimate species, the episodic pattern of uterine PGF2alpha secretion appears to be controlled indirectly by the ovarian steroid hormones estradiol-17beta and progesterone. It is proposed that, toward the end of the luteal phase, loss of progesterone action occurs both centrally in the hypothalamus and in the uterus due to the catalytic reduction (downregulation) of progesterone receptors by progesterone. Loss of progesterone action may permit the return of estrogen action, both centrally in the hypothalamus and peripherally in the uterus. Return of central estrogen action appears to cause the hypothalamic oxytocin pulse generator to alter its frequency and produce a series of intermittent episodes of oxytocin secretion. In the uterus, returning estrogen action concomitantly upregulates endometrial oxytocin receptors. The interaction of neurohypophysial oxytocin with oxytocin receptors in the endometrium evokes the secretion of luteolytic pulses of uterine PGF2alpha. Thus the uterus can be regarded as a transducer that converts intermittent neural signals from the hypothalamus, in the form of episodic oxytocin secretion, into luteolytic pulses of uterine PGF2alpha. In ruminants, portions of a finite store of luteal oxytocin are released synchronously by uterine PGF2alpha pulses. Luteal oxytocin in ruminants may thus serve to amplify neural oxytocin signals that are transduced by the uterus into pulses of PGF2alpha. Whether such amplification of episodic PGF2alpha pulses by luteal oxytocin is a necessary requirement for luteolysis in ruminants remains to be determined. Recently, oxytocin has been reported to be produced by the endometrium and myometrium of the sow, mare, and rat. It is possible that uterine production of oxytocin may act as a supplemental source of oxytocin during luteolysis in these species. In primates, oxytocin and its receptor and PGF2alpha and its receptor have been identified in the corpus luteum and/or ovary. Therefore, it is possible that oxytocin signals of ovarian and/or neural origin may be transduced locally at the ovarian level, thus explaining why luteolysis and ovarian cyclicity can proceed in the absence of the uterus in primates. However, it remains to be established whether the intraovarian process of luteolysis is mediated by arachidonic acid and/or its metabolite PGF2alpha and whether the central oxytocin pulse generator identified in nonprimate species plays a mediatory role during luteolysis in primates. Regardless of the mechanism, intraovarian luteolysis in primates (progesterone withdrawal) appears to be the primary stimulus for the subsequent production of endometrial prostaglandins associated with menstruation. In contrast, luteolysis in nonprimate species appears to depend on the prior production of endometrial prostaglandins. In primates, uterine prostaglandin production may reflect a vestigial mechanism that has been retained during evolution from an earlier dependence on uterine prostaglandin production for luteolysis.
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms controlling the function and life span of the corpus luteum.

            The primary function of the corpus luteum is secretion of the hormone progesterone, which is required for maintenance of normal pregnancy in mammals. The corpus luteum develops from residual follicular granulosal and thecal cells after ovulation. Luteinizing hormone (LH) from the anterior pituitary is important for normal development and function of the corpus luteum in most mammals, although growth hormone, prolactin, and estradiol also play a role in several species. The mature corpus luteum is composed of at least two steroidogenic cell types based on morphological and biochemical criteria and on the follicular source of origin. Small luteal cells appear to be of thecal cell origin and respond to LH with increased secretion of progesterone. LH directly stimulates the secretion of progesterone from small luteal cells via activation of the protein kinase A second messenger pathway. Large luteal cells are of granulosal cell origin and contain receptors for PGF(2alpha) and appear to mediate the luteolytic actions of this hormone. If pregnancy does not occur, the corpus luteum must regress to allow follicular growth and ovulation and the reproductive cycle begins again. Luteal regression is initiated by PGF(2alpha) of uterine origin in most subprimate species. The role played by PGF(2alpha) in primates remains controversial. In primates, if PGF(2alpha) plays a role in luteolysis, it appears to be of ovarian origin. The antisteroidogenic effects of PGF(2alpha) appear to be mediated by the protein kinase C second messenger pathway, whereas loss of luteal cells appears to follow an influx of calcium, activation of endonucleases, and an apoptotic form of cell death. If the female becomes pregnant, continued secretion of progesterone from the corpus luteum is required to provide an appropriate uterine environment for maintenance of pregnancy. The mechanisms whereby the pregnant uterus signals the corpus luteum that a conceptus is present varies from secretion of a chorionic gonadotropin (primates and equids), to secretion of an antiluteolytic factor (domestic ruminants), and to a neuroendocrine reflex arc that modifies the secretory patterns of hormones from the anterior pituitary (most rodents).
              • Record: found
              • Abstract: found
              • Article: not found

              Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?

              To determine the physiological significance of tumor necrosis factor alpha (TNFalpha) in the regulation of luteolytic prostaglandin (PG) F(2alpha) release by the bovine endometrium, the effect of TNF-alpha on PGF(2alpha) output by the endometrial tissues in vitro was investigated and compared with the effect of oxytocin (OT). Furthermore, the presence of specific receptors for TNFalpha in the bovine endometrium during the estrous cycle was determined. Endometrial slices (20-30 mg) taken from six stages of the estrous cycle (estrus: Day 0; early I: Days 2-3; early II: Days 5-6; mid-: Days 8-12; late: Days 15-17; and follicular: Days 19-21), as determined by macroscopic examination of the ovaries and uterus, were exposed to TNFalpha (0.06-6 nM) and/or OT (100 nM). OT stimulated PGF(2alpha) output at the follicular stage and at estrus (P < 0.001), but not at the late luteal stage. On the other hand, the stimulatory effects of TNFalpha on PGF(2alpha) output were observed not only at the follicular stage but also at the late luteal stage (P < 0.001). When the endometrial tissues at late luteal stage were simultaneously exposed to TNFalpha (0.6 nM) and OT (100 nM), the stimulatory effect on PGF(2alpha) output was higher than the effect of TNFalpha or OT alone (P < 0.05). Specific binding of TNFalpha to the bovine endometrial membranes was observed throughout the estrous cycle. The concentration of TNF-alpha receptor at the early I luteal stage was less than the concentrations at other luteal stages (P < 0.01). The dissociation constant (K(d)) values of the endometrial membranes were constant during the estrous cycle. The overall results lead us to hypothesize that TNFalpha may be a trigger for the output of PGF(2alpha) by the endometrium at the initiation of luteolysis in cattle.

                Author and article information

                Contributors
                +81-11-7067151 , niojun@med.hokudai.ac.jp
                oook.miyazakiooo@hotmail.co.jp
                ag20092@s.okayama-u.ac.jp
                kokuda@okayama-u.ac.jp
                tiwanaga@med.hokudai.ac.jp
                Journal
                J Ovarian Res
                J Ovarian Res
                Journal of Ovarian Research
                BioMed Central (London )
                1757-2215
                19 October 2016
                19 October 2016
                2016
                : 9
                : 67
                Affiliations
                [1 ]Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo, 060-8638 Japan
                [2 ]Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Tsushima Naka Kita-ku 1-1-1, Okayama, 700-8530 Japan
                [3 ]Obihiro University of Agriculture and Veterinary Medicine, 2-11, Nishi, Inada-cho, Obihiro, 080-8555 Japan
                Article
                277
                10.1186/s13048-016-0277-0
                5070142
                27756340
                85109026-d99d-46a4-8371-dbc7fe1809a8
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 August 2016
                : 9 October 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 26460262
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Obstetrics & Gynecology
                luteolysis,arteriovenous anastomosis,myofibroblasts,pgf2α,tgfβ1
                Obstetrics & Gynecology
                luteolysis, arteriovenous anastomosis, myofibroblasts, pgf2α, tgfβ1

                Comments

                Comment on this article

                Related Documents Log