215
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Does Central Venous Pressure Predict Fluid Responsiveness?*: A Systematic Review of the Literature and the Tale of Seven Mares

      , ,
      Chest
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Central venous pressure (CVP) is used almost universally to guide fluid therapy in hospitalized patients. Both historical and recent data suggest that this approach may be flawed. A systematic review of the literature to determine the following: (1) the relationship between CVP and blood volume, (2) the ability of CVP to predict fluid responsiveness, and (3) the ability of the change in CVP (DeltaCVP) to predict fluid responsiveness. MEDLINE, Embase, Cochrane Register of Controlled Trials, and citation review of relevant primary and review articles. Reported clinical trials that evaluated either the relationship between CVP and blood volume or reported the associated between CVP/DeltaCVP and the change in stroke volume/cardiac index following a fluid challenge. From 213 articles screened, 24 studies met our inclusion criteria and were included for data extraction. The studies included human adult subjects, healthy control subjects, and ICU and operating room patients. Data were abstracted on study design, study size, study setting, patient population, correlation coefficient between CVP and blood volume, correlation coefficient (or receive operator characteristic [ROC]) between CVP/DeltaCVP and change in stroke index/cardiac index, percentage of patients who responded to a fluid challenge, and baseline CVP of the fluid responders and nonresponders. Metaanalytic techniques were used to pool data. The 24 studies included 803 patients; 5 studies compared CVP with measured circulating blood volume, while 19 studies determined the relationship between CVP/DeltaCVP and change in cardiac performance following a fluid challenge. The pooled correlation coefficient between CVP and measured blood volume was 0.16 (95% confidence interval [CI], 0.03 to 0.28). Overall, 56+/-16% of the patients included in this review responded to a fluid challenge. The pooled correlation coefficient between baseline CVP and change in stroke index/cardiac index was 0.18 (95% CI, 0.08 to 0.28). The pooled area under the ROC curve was 0.56 (95% CI, 0.51 to 0.61). The pooled correlation between DeltaCVP and change in stroke index/cardiac index was 0.11 (95% CI, 0.015 to 0.21). Baseline CVP was 8.7+/-2.32 mm Hg [mean+/-SD] in the responders as compared to 9.7+/-2.2 mm Hg in nonresponders (not significant). This systematic review demonstrated a very poor relationship between CVP and blood volume as well as the inability of CVP/DeltaCVP to predict the hemodynamic response to a fluid challenge. CVP should not be used to make clinical decisions regarding fluid management.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock

          Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Of the 263 enrolled patients, 130 were randomly assigned to early goal-directed therapy and 133 to standard therapy; there were no significant differences between the groups with respect to base-line characteristics. In-hospital mortality was 30.5 percent in the group assigned to early goal-directed therapy, as compared with 46.5 percent in the group assigned to standard therapy (P = 0.009). During the interval from 7 to 72 hours, the patients assigned to early goal-directed therapy had a significantly higher mean (+/-SD) central venous oxygen saturation (70.4+/-10.7 percent vs. 65.3+/-11.4 percent), a lower lactate concentration (3.0+/-4.4 vs. 3.9+/-4.4 mmol per liter), a lower base deficit (2.0+/-6.6 vs. 5.1+/-6.7 mmol per liter), and a higher pH (7.40+/-0.12 vs. 7.36+/-0.12) than the patients assigned to standard therapy (P < or = 0.02 for all comparisons). During the same period, mean APACHE II scores were significantly lower, indicating less severe organ dysfunction, in the patients assigned to early goal-directed therapy than in those assigned to standard therapy (13.0+/-6.3 vs. 15.9+/-6.4, P < 0.001). Early goal-directed therapy provides significant benefits with respect to outcome in patients with severe sepsis and septic shock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of two fluid-management strategies in acute lung injury.

            Optimal fluid management in patients with acute lung injury is unknown. Diuresis or fluid restriction may improve lung function but could jeopardize extrapulmonary-organ perfusion. In a randomized study, we compared a conservative and a liberal strategy of fluid management using explicit protocols applied for seven days in 1000 patients with acute lung injury. The primary end point was death at 60 days. Secondary end points included the number of ventilator-free days and organ-failure-free days and measures of lung physiology. The rate of death at 60 days was 25.5 percent in the conservative-strategy group and 28.4 percent in the liberal-strategy group (P=0.30; 95 percent confidence interval for the difference, -2.6 to 8.4 percent). The mean (+/-SE) cumulative fluid balance during the first seven days was -136+/-491 ml in the conservative-strategy group and 6992+/-502 ml in the liberal-strategy group (P<0.001). As compared with the liberal strategy, the conservative strategy improved the oxygenation index ([mean airway pressure x the ratio of the fraction of inspired oxygen to the partial pressure of arterial oxygen]x100) and the lung injury score and increased the number of ventilator-free days (14.6+/-0.5 vs. 12.1+/-0.5, P<0.001) and days not spent in the intensive care unit (13.4+/-0.4 vs. 11.2+/-0.4, P<0.001) during the first 28 days but did not increase the incidence or prevalence of shock during the study or the use of dialysis during the first 60 days (10 percent vs. 14 percent, P=0.06). Although there was no significant difference in the primary outcome of 60-day mortality, the conservative strategy of fluid management improved lung function and shortened the duration of mechanical ventilation and intensive care without increasing nonpulmonary-organ failures. These results support the use of a conservative strategy of fluid management in patients with acute lung injury. (ClinicalTrials.gov number, NCT00281268 [ClinicalTrials.gov].). Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sepsis in European intensive care units: results of the SOAP study.

              To better define the incidence of sepsis and the characteristics of critically ill patients in European intensive care units. Cohort, multiple-center, observational study. One hundred and ninety-eight intensive care units in 24 European countries. All new adult admissions to a participating intensive care unit between May 1 and 15, 2002. None. Demographic data, comorbid diseases, and clinical and laboratory data were collected prospectively. Patients were followed up until death, until hospital discharge, or for 60 days. Of 3,147 adult patients, with a median age of 64 yrs, 1,177 (37.4%) had sepsis; 777 (24.7%) of these patients had sepsis on admission. In patients with sepsis, the lung was the most common site of infection (68%), followed by the abdomen (22%). Cultures were positive in 60% of the patients with sepsis. The most common organisms were Staphylococcus aureus (30%, including 14% methicillin-resistant), Pseudomonas species (14%), and Escherichia coli (13%). Pseudomonas species was the only microorganism independently associated with increased mortality rates. Patients with sepsis had more severe organ dysfunction, longer intensive care unit and hospital lengths of stay, and higher mortality rate than patients without sepsis. In patients with sepsis, age, positive fluid balance, septic shock, cancer, and medical admission were the important prognostic variables for intensive care unit mortality. There was considerable variation between countries, with a strong correlation between the frequency of sepsis and the intensive care unit mortality rates in each of these countries. This large pan-European study documents the high frequency of sepsis in critically ill patients and shows a close relationship between the proportion of patients with sepsis and the intensive care unit mortality in the various countries. In addition to age, a positive fluid balance was among the strongest prognostic factors for death. Patients with intensive care unit acquired sepsis have a worse outcome despite similar severity scores on intensive care unit admission.
                Bookmark

                Author and article information

                Journal
                Chest
                Chest
                Elsevier BV
                00123692
                July 2008
                July 2008
                : 134
                : 1
                : 172-178
                Article
                10.1378/chest.07-2331
                18628220
                85144712-f4a7-4210-9814-21a26cd07e66
                © 2008

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article