10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tartary Buckwheat in Human Nutrition

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tartary buckwheat ( Fagopyrum tataricum Gaertn.) originates in mountain areas of western China, and it is mainly cultivated in China, Bhutan, northern India, Nepal, and central Europe. Tartary buckwheat shows greater cold resistance than common buckwheat, and has traits for drought tolerance. Buckwheat can provide health benefits due to its contents of resistant starch, mineral elements, proteins, and in particular, phenolic substances, which prevent the effects of several chronic human diseases, including hypertension, obesity, cardiovascular diseases, and gallstone formation. The contents of the flavonoids rutin and quercetin are very variable among Tartary buckwheat samples from different origins and parts of the plants. Quercetin is formed after the degradation of rutin by the Tartary buckwheat enzyme rutinosidase, which mainly occurs after grain milling during mixing of the flour with water. High temperature treatments of wet Tartary buckwheat material prevent the conversion of rutin to quercetin.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction between phenolics and gut microbiota: role in human health.

          Dietary phenolic compounds are often transformed before absorption. This transformation modulates their biological activity. Different studies have been carried out to understand gut microbiota transformations of particular polyphenol types and identify the responsible microorganisms. Although there are potentially thousands of different phenolic compounds in the diet, they are typically transformed to a much smaller number of metabolites. The aim of this review was to discuss the current information about the microbial degradation metabolites obtained from different phenolics and their formation pathways, identifying their differences and similarities. The modulation of gut microbial population by phenolics was also reviewed in order to understand the two-way phenolic-microbiota interaction. Clostridium and Eubacterium genera, which are phylogenetically associated, are other common elements involved in the metabolism of many phenolics. The health benefits from phenolic consumption should be attributed to their bioactive metabolites and also to the modulation of the intestinal bacterial population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability.

            The physiological functions and bioavailability of flavonoids have been widely investigated since their bioactivities were identified about 80 years ago. Quercetin is a typical flavonoid ubiquitously contained in vegetables and fruits with several biological effects demonstrated in vitro and in vivo including antioxidative, anti-inflammatory, anticancer, and antidiabetic activities. After the ingestion of vegetables and fruits, quercetin glycosides are metabolized, absorbed, and circulated as types of conjugates in the blood. Thereafter, quercetin-3-O-β-D-glucuronide (Q3GA), a major metabolite of quercetin, is distributed throughout the body where it may exert beneficial functions in target tissues. Hydrophilic Q3GA has been found to be deconjugated into hydrophobic quercetin aglycone at injured sites which, in turn, may improve the pathological conditions. This review presents updated information on the biological aspects and mechanisms of action of quercetin and its related polyphenols. In particular, new insights into their beneficial health effects on the brain, blood vessels, muscle, and intestine will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus

              B Robson (2020)
              This paper concerns study of the genome of the Wuhan Seafood Market isolate believed to represent the causative agent of the disease COVID-19. This is to find a short section or sections of viral protein sequence suitable for preliminary design proposal for a peptide synthetic vaccine and a peptidomimetic therapeutic, and to explore some design possibilities. The project was originally directed towards a use case for the Q-UEL language and its implementation in a knowledge management and automated inference system for medicine called the BioIngine, but focus here remains mostly on the virus itself. However, using Q-UEL systems to access relevant and emerging literature, and to interact with standard publically available bioinformatics tools on the Internet, did help quickly identify sequences of amino acids that are well conserved across many coronaviruses including 2019-nCoV. KRSFIEDLLFNKV was found to be particularly well conserved in this study and corresponds to the region around one of the known cleavage sites of the SARS virus that are believed to be required for virus activation for cell entry. This sequence motif and surrounding variations formed the basis for proposing a specific synthetic vaccine epitope and peptidomimetic agent. The work can, nonetheless, be described in traditional bioinformatics terms, and readily reproduced by others, albeit with the caveat that new data and research into 2019-nCoV is emerging and evolving at an explosive pace. Preliminary studies using molecular modeling and docking, and in that context the potential value of certain known herbal extracts, are also described.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                05 April 2021
                April 2021
                : 10
                : 4
                : 700
                Affiliations
                [1 ]Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; zlata.luthar@ 123456bf.uni-lj.si (Z.L.); aleksandra.golob@ 123456bf.uni-lj.si (A.G.); mateja.germ@ 123456bf.uni-lj.si (M.G.)
                [2 ]The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia; blanka.vombergar@ 123456guest.arnes.si
                [3 ]Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
                Author notes
                [* ]Correspondence: ivan.kreft@ 123456guest.arnes.si ; Tel.: +386-1-3007981
                Article
                plants-10-00700
                10.3390/plants10040700
                8066602
                33916396
                8514bcd9-ac9a-4691-83cb-b0d6a494f491
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 06 March 2021
                : 02 April 2021
                Categories
                Review

                tartary buckwheat,retrograde starch,proteins,phenolic substances,flavonoids,anti-virus

                Comments

                Comment on this article