19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

          Related collections

          Author and article information

          Journal
          Plant Physiol.
          Plant physiology
          1532-2548
          0032-0889
          Jun 27 2014
          : 165
          : 4
          Affiliations
          [1 ] Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.).
          [2 ] Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.) carpita@purdue.edu.
          Article
          pp.114.242446
          10.1104/pp.114.242446
          4119032
          24972714
          8518d8c7-f7a0-4aac-ad28-ea7524645e72
          © 2014 American Society of Plant Biologists. All Rights Reserved.
          History

          Comments

          Comment on this article