89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nipah Virus Encephalitis Reemergence, Bangladesh

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two Nipah virus encephalitis outbreaks in Bangladesh may be associated with person-to-person transmission.

          Abstract

          We retrospectively investigated two outbreaks of encephalitis in Meherpur and Naogaon, Bangladesh, which occurred in 2001 and 2003. We collected serum samples from persons who were ill, their household contacts, randomly selected residents, hospital workers, and various animals. Cases were classified as laboratory confirmed or probable. We identified 13 cases (4 confirmed, 9 probable) in Meherpur; 7 were in persons in two households. Patients were more likely than nonpatients to have close contact with other patients or have contact with a sick cow. In Naogaon, we identified 12 cases (4 confirmed, 8 probable); 7 were in persons clustered in 2 households. Two Pteropus bats had antibodies for Nipah virus. Samples from hospital workers were negative for Nipah virus antibodies. These outbreaks, the first since 1999, suggest that transmission may occur through close contact with other patients or from exposure to a common source. Surveillance and enhancement of diagnostic capacity to detect Nipah virus infection are recommended.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus.

          Since it was first described in Australia in 1994, Hendra virus (HeV) has caused two outbreaks of fatal disease in horses and humans, and an isolated fatal horse case. Our preliminary studies revealed a high prevalence of neutralizing antibodies to HeV in bats of the genus PTEROPUS:, but it was unclear whether this was due to infection with HeV or a related virus. We developed the hypothesis that HeV excretion from bats might be related to the birthing process and we targeted the reproductive tract for virus isolation. Three virus isolates were obtained from the uterine fluid and a pool of foetal lung and liver from one grey-headed flying-fox (Pteropus poliocephalus), and from the foetal lung of one black flying-fox (P. alecto). Antigenically, these isolates appeared to be closely related to HeV, returning positive results on immunofluorescent antibody staining and constant-serum varying-virus neutralization tests. Using an HeV-specific oligonucleotide primer pair, genomic sequences of the isolates were amplified. Sequencing of 200 nucleotides in the matrix gene identified that these three isolates were identical to HeV. Isolations were confirmed after RNA extracted from original material was positive for HeV RNA when screened on an HeV Taqman assay. The isolation of HeV from pteropid bats corroborates our earlier serological and epidemiological evidence that they are a natural reservoir host of the virus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia.

            Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died. Samples of tissue were taken at necropsy. Blood and cerebrospinal-fluid (CSF) samples taken before death were cultured for viruses, and tested for antibodies to viruses. The three pig-farmers presented with fever, headache, and altered level of consciousness. Myoclonus was present in two patients. There were signs of brainstem dysfunction with hypertension and tachycardia. Rapid deterioration led to irreversible hypotension and death. A virus causing syncytial formation of vero cells was cultured from the CSF of two patients after 5 days; the virus stained positively with antibodies against Hendra virus by indirect immunofluorescence. IgM capture ELISA showed that all three patients had IgM antibodies in CSF against Hendra viral antigens. Necropsy showed widespread microinfarction in the central nervous system and other organs resulting from vasculitis-induced thrombosis. There was no clinical evidence of pulmonary involvement. Inclusion bodies likely to be of viral origin were noted in neurons near vasculitic blood vessels. The causative agent was a previously undescribed paramyxovirus related to the Hendra virus. Close contact with infected pigs may be the source of the viral transmission. Clinically and epidemiologically the infection is distinct from infection by the Hendra virus. We propose that this Hendra-like virus was the cause of the outbreak of encephalitis in Malaysia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of Nipah virus from Malaysian Island flying-foxes.

              In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                December 2004
                : 10
                : 12
                : 2082-2087
                Affiliations
                [* ]Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
                []Centre for Health and Population Research, Dhaka, Bangladesh;
                []Office of Civil Surgeon, Naogaon, Bangladesh
                Author notes
                Address for correspondence: Vincent P. Hsu, 685 Palm Springs Drive, Suite 2A, Altmonte Springs, FL 32701, USA; fax: 206-296-4803; email: vhsu@ 123456att.net
                Article
                04-0701
                10.3201/eid1012.040701
                3323384
                15663842
                85198fd2-9173-474b-a860-99a04a53c193
                History
                Categories
                Research
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article