+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eukaryote Culturomics of the Gut Reveals New Species

      , , *

      PLoS ONE

      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The repertoire of microeukaryotes in the human gut has been poorly explored, mainly in individuals living in northern hemisphere countries. We further explored this repertoire using PCR-sequencing and culture in seven individuals living in four tropical countries. A total of 41 microeukaryotes including 38 different fungal species and three protists were detected. Four fungal species, Davidiella tassiana, Davidiella sp., Corticiaceae sp., and Penicillium sp., were uniquely detected by culture; 27 fungal species were uniquely detected using PCR-sequencing and Candida albicans, Candida glabrata, Trichosporon asahii, Clavispora lusitaniae, Debaryomyces hansenii, Malassezia restricta, and Malassezia sp. were detected using both molecular and culture methods. Fourteen microeukaryotes were shared by the seven individuals, whereas 27 species were found in only one individual, including 11 species in Amazonia, nine species in Polynesia, five species in India, and two species in Senegal. These data support a worldwide distribution of Malassezia sp., Trichosporon sp., and Candida sp. in the gut mycobiome. Here, 13 fungal species and two protists, Stentor roeseli and Vorticella campanula, were observed for first time in the human gut. This study revealed a previously unsuspected diversity in the repertoire of human gut microeukaryotes, suggesting spots for further exploring this repertoire.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents

          Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.
            • Record: found
            • Abstract: found
            • Article: not found

            Fungi and inflammatory bowel diseases: Alterations of composition and diversity.

            Altered bacterial diversity of the intestinal mucosa-associated microbiota may reflect the net influence of lifestyle factors associated with the development of chronic inflammatory bowel diseases (IBD). While a reduced bacterial diversity has been reported in IBD, little is known about the fungal microbiota. The aim of this study was to carry out a systematic analysis of intestinal fungal microbiota in IBD. The mucosa-associated fungal microbiota of 104 colonic biopsy tissues from 47 controls and 57 IBD patients was investigated using metagenomic 18S rDNA-based denaturing gradient gel electrophoresis (DGGE), clone libraries, sequencing, and in situ hybridization techniques. Fungi-specific 18S rDNA signatures could be detected in all 104 patients, accounting for only a small proportion of the intestinal microbiota (0.02% of the mucosal and 0.03% of the fecal microbiota). An overall fungal biodiversity of 43 different operational taxonomic units (OTUs) was found in the clone libraries. The qualitative composition of fungal microbiota was different between patients with IBD and controls. The DGGE profiles showed a higher mean fungal diversity in patients with Crohn's disease (CD) in comparison with controls (10.8+/-3.1 versus 6.2+/-2.4 for CD, p
              • Record: found
              • Abstract: found
              • Article: not found

              Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces.

              Molecular ecological surveys of the human gut microbiota to date have focused on the prokaryotic fraction of the community and have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information on the eukaryotic composition of the microbiota, and no culture-independent sequence-based surveys of human faeces are available. Culture-independent analyses based on DNA extraction and polymerase chain reaction targeting both the total eukaryotic 18S rRNA genes and fungal internal transcribed regions (ITS), together with culture-dependent analyses of fungi, were performed on a group of healthy volunteers. Temporal analysis was also included wherever possible. Collectively, the data presented in this study indicate that eukaryotic diversity of the human gut is low, largely temporally stable and predominated by different subtypes of Blastocystis. Specific analyses of the fungal populations indicate that a disparity exists between the cultivable fraction, which is dominated by Candida sp, and culture-independent analysis, where sequences identical to members of the genera Gloeotinia/Paecilomyces and Galactomyces were most frequently retrieved from both fungal ITS profiles and subsequent clone libraries. Collectively, these results highlight the presence of unprecedented intestinal eukaryotic inhabitants whose functional roles are as yet unknown in healthy individuals. Furthermore, differences between results obtained from traditionally employed culture-based methods and those obtained from culture-independent techniques highlight similar anomalies to that encountered when first analysing the bacterial diversity of the human faecal microbiota using culture-independent surveys.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                11 September 2014
                : 9
                : 9
                Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
                University of Minnesota, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MD. Performed the experiments: NG. Analyzed the data: NG MD DR. Contributed reagents/materials/analysis tools: DR. Contributed to the writing of the manuscript: NG MD DR.


                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 5
                These authors have no support or funding to report.
                Research Article
                Biology and Life Sciences
                Gut Bacteria
                Medicine and Health Sciences
                Infectious Diseases
                Fungal Diseases
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.



                Comment on this article