33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathophysiology of Degenerative Disc Disease

      review-article
      Asian Spine Journal
      Korean Society of Spine Surgery
      Lumbar spine, Degenerative disc, Pathophysiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intervertebral disc is characterized by a tension-resisting annulus fibrosus and a compression-resisting nucleus pulposus composed largely of proteoglycan. The most important function of the annulus and nucleus is to provide mechanical stability to the disc. Degenerative disc disease in the lumbar spine is a serious health problem. Although the three joint complex model of the degenerative process is widely accepted, the etiological basis of this degeneration is poorly understood. With the recent progress in molecular biology and modern biological techniques, there has been dramatic improvement in the understanding of aging and degenerative changes of the disc. Knowledge of the pathophysiology of the disc degeneration can help in the appropriate choice of treatment and to develop tissue engineering for biological restoration of degenerated discs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science.

          A histologic study on age-related changes of the human lumbar intervertebral disc was conducted. To investigate comprehensively age-related temporospatial histologic changes in human lumbar intervertebral disc, and to develop a practicable and reliable classification system for age-related histologic disc alteration. No comprehensive microscopic analysis of age-related disc changes is available. There is no conceptual morphologic framework for classifying age-related disc changes as a reference basis for more sophisticated molecular biologic analyses of the causative factors of disc aging or premature aging (degeneration). A total of 180 complete sagittal lumbar motion segment slices obtained from 44 deceased individuals (fetal to 88 years of age) were analyzed with regard to 11 histologic variables for the intervertebral disc and endplate, respectively. In addition, 30 surgical specimens (3 regions each) were investigated with regard to five histologic variables. Based on the semiquantitative analyses of 20,250 histologic variable assessments, a classification system was developed and tested in terms of validity, practicability, and reliability. The classification system was applied to cadaveric and surgical disc specimens not included in the development of the classification system, and the scores were assessed by two additional independent raters. A semiquantitative analyses provided clear histologic evidence for the detrimental effect of a diminished blood supply on the endplate, resulting in the tissue breakdown beginning in the nucleus pulposus and starting in the second life decade. Significant temporospatial variations in the presence and abundance of histologic disc alterations were observed across levels, regions, macroscopic degeneration grades, and age groups. A practicable classification system for age-related histologic disc alterations was developed, resulting in moderate to excellent reliability (kappa values, 0.49-0.98) depending on the histologic variable. Application of the classification system to cadaveric and surgical specimens demonstrated a significant correlation with age ( < 0.0001) and macroscopic grade of degeneration ( < 0001). However, substantial data scatter caution against reliance on traditional macroscopic disc grading and favor a histology-based classification system as a reference standard. Histologic disc alterations can reliably be graded based on the proposed classification system providing a morphologic framework for more sophisticated molecular biologic analyses of factors leading to age-related disc changes. Diminished blood supply to the intervertebral disc in the first half of the second life decade appears to initiate tissue breakdown.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescence in human intervertebral discs.

            Intervertebral discs demonstrate degenerative changes relatively early in life. Disc degeneration, in turn, is associated with back pain and disc herniation, both of which cause considerable clinical problems in the western world. Cell senescence has been linked to degenerative diseases of other connective tissues such as osteoarthritis. Thus we investigated the degree of cell senescence in different regions of discs from patients with different disc disorders. Discs were obtained from 25 patients with disc herniations; from 27 patients undergoing anterior surgery for either back pain due to degenerative disc disease (n = 25) or spondylolisthesis (n = 2) and from six patients with scoliosis. In addition, four discs were obtained post-mortem. Samples were classified as annulus fibrosus or nucleus pulposus and tissue sections were assessed for the degree of cell senescence (using the marker senescence-associated-beta-galactosidase (SA-beta-Gal)) and the number of cells present in clusters. There were significantly more SA-beta-Gal positive cells in herniated discs (8.5% of cells) than those with degenerative disc disease, spondylolisthesis, scoliosis, or cadaveric discs (0.5% of cells; P < 0.001). There was more senescence of cells of the nucleus pulposus compared to those of the annulus fibrosus and in herniated discs a higher proportion of cells in cell clusters (defined as groups of three or more cells) were SA-beta-Gal positive (25.5%) compared to cells not in clusters (4.2%, P < 0.0001). This study demonstrates an increased degree of cell senescence in herniated discs, particularly in the nucleus where cell clusters occur. These clusters have been shown previously to form via cell proliferation, which is likely to explain the increased senescence. These findings could have two important clinical implications: firstly, that since senescent cells are known to behave abnormally in other locations, they may lead to deleterious effects on the disc matrix and so contribute to the pathogenesis and secondly, cells from such tissue may not be ideal for cell therapy and repair via tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc.

              Disc cell viability was analyzed in relation to nutrient supply and cellular demand in vitro in a diffusion chamber. To determine relations among nutrient supply, nutrient concentrations. and cell viability. Although a fall in nutrient supply has long been thought the cause of disc degeneration in vivo, little information exists about the effects of nutrient levels or supply on cell viability and metabolism. Isolated bovine nucleus cells were cultured in agarose gels in a diffusion chamber up to 13 days. Nutrients were supplied to the open sides of the chamber and diffused through the gel to the center, 12.5 mm away from the nutrient supply, in a configuration analogous to that of the disc in vivo. Profiles of cell viability and concentration of glycosaminoglycans across the chamber were measured in relation to cell density and medium composition. Cells remained viable across the chamber at low cell densities. However, at higher densities, cells in the center of the chamber died. The viable distance from the nutrient supply fell with an increase in cell density. Glucose was a critical nutrient. Survival was also poor at acidic pH (6.0). At 0% oxygen, disc cells survived up to 13 days with no loss of viability, but produced very little proteoglycan. The results support the idea that maximum cell density in the disc is regulated by nutritional constraints, and that a fall in nutrient supply reduces the number of viable cells in the disc and thus leads to degeneration.
                Bookmark

                Author and article information

                Journal
                Asian Spine J
                ASJ
                Asian Spine Journal
                Korean Society of Spine Surgery
                1976-1902
                1976-7846
                June 2009
                30 June 2009
                : 3
                : 1
                : 39-44
                Affiliations
                Department of Orthopedic Surgery, Kwangju Christian Hospital, Gwangju, Korea.
                Author notes
                Corresponding author: Yong-Soo Choi, MD. 264 Yang-lim dong, Nam-gu, Gwangju, 503-715, Korea. Tel: +82-62-650-5060, Fax: +82-62-650-5066, stemcellchoi@ 123456yahoo.co.kr
                Article
                10.4184/asj.2009.3.1.39
                2852042
                20404946
                8538aec5-c074-47ad-b39a-7f358ce423cc
                Copyright © 2009 by Korean Society of Spine Surgery

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2009
                : 30 March 2009
                : 28 April 2009
                Categories
                Review Article

                Orthopedics
                degenerative disc,lumbar spine,pathophysiology
                Orthopedics
                degenerative disc, lumbar spine, pathophysiology

                Comments

                Comment on this article