6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assorted Methods for Decontamination of Aflatoxin M1 in Milk Using Microbial Adsorbents

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aflatoxins (AF) are carcinogenic metabolites produced by different species of Aspergillus which readily colonize crops. AFM1 is secreted in the milk of lactating mammals through the ingestion of feedstuffs contaminated by aflatoxin B1 (AFB1). Therefore, its presence in milk, even in small amounts, presents a real concern for dairy industries and consumers of dairy products. Different strategies can lead to the reduction of AFM1 contamination levels in milk. They include adopting good agricultural practices, decreasing the AFB1 contamination of animal feeds, or using diverse types of adsorbent materials. One of the most effective types of adsorbents used for AFM1 decontamination are those of microbial origin. This review discusses current issues about AFM1 decontamination methods. These methods are based on the use of different bio-adsorbent agents such as bacteria and yeasts to complex AFM1 in milk. Moreover, this review answers some of the raised concerns about the binding stability of the formed AFM1-microbial complex. Thus, the efficiency of the decontamination methods was addressed, and plausible experimental variants were discussed.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies to prevent mycotoxin contamination of food and animal feed: a review.

          Mycotoxins are fungal secondary metabolites that have been associated with severe toxic effects to vertebrates produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Penicillium, Fusarium, and Alternaria species. The contamination of foods and animal feeds with mycotoxins is a worldwide problem. We reviewed various control strategies to prevent the growth of mycotoxigenic fungi as well as to inhibit mycotoxin biosynthesis including pre-harvest (resistance varieties, field management and the use of biological and chemical agents), harvest management, and post-harvest (improving of drying and storage conditions, the use of natural and chemical agents, and irradiation) applications. While much work in this area has been performed on the most economically important mycotoxins, aflatoxin B(1) and ochratoxin A much less information is available on other mycotoxins such as trichothecenes, fumonisin B(1), zearalenone, citrinin, and patulin. In addition, physical, chemical, and biological detoxification methods used to prevent exposure to the toxic and carcinogenic effect of mycotoxins are discussed. Finally, dietary strategies, which are one of the most recent approaches to counteract the mycotoxin problem with special emphasis on in vivo and in vitro efficacy of several of binding agents (activated carbons, hydrated sodium calcium aluminosilicate, bentonite, zeolites, and lactic acid bacteria) have also been reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update of survey, regulation and toxic effects of mycotoxins in Europe.

            The most frequent toxigenic fungi in Europe are Aspergillus, Penicillium and Fusarium species. They produce aflatoxin B1 transformed into aflatoxin M1 found in the milk, as well as Ochratoxins and Zearalenone, Fumonisin B1, T-2 toxin, HT-2 toxin and deoxynivalenol (vomitoxin), which are of increasing concern in human health. These mycotoxins are under continuous survey in Europe, but the regulatory aspects still need to be set up and/or harmonised at European level. They are found in foodstuffs and are not destroyed by normal industrial processing or cooking since they are heat-stable. Some of their metabolites are still toxic and may be involved in human diseases. Their toxic effects (liver, kidney and hematopoetic toxicity, immune toxicity, reproduction toxicity, foetal toxicity and teratogenicity, and mainly carcinogenicity) are mostly known in experimental models, the extrapolation to humans being always inaccurate. The inaccuracy of extrapolation to humans may be explained by the lack of adequate food consumption data, lack of knowledge about relative health risks associated with specifically proposed limits and by the possibility of synergism with other mycotoxins present in the same food commodities. Other pathological causes are viral hepatitis, immune or hormonal deficiencies or organ dysfunction. Even when a specific biomarker of a given mycotoxin is identified in humans, it remains difficult to establish the relation with a given illness, because of genetic polymorphism and the possible beneficial influence of diet, and because other environmental toxicants may well interfere. The acceptable daily intake limits are mostly based on animal data and may be too high, due to the differences in the sensitivity of different animal species. The prevention involves first reduction of mycotoxin levels in foodstuffs and further increasing the intake of diet components such as vitamins, antioxidants and substances known to prevent carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenesis and functions of bacterial S-layers.

              The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                29 May 2019
                June 2019
                : 11
                : 6
                : 304
                Affiliations
                [1 ]Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon ; sahar.nahle@ 123456hotmail.com (S.N.); nicolas.louka@ 123456usj.edu.lb (N.L.); andre.khoury@ 123456usj.edu.lb (A.E.K.)
                [2 ]Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon; alichokr@ 123456hotmail.com (A.C.); aatoui@ 123456ul.edu.lb (A.A.)
                [3 ]Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon
                Author notes
                [* ]Correspondence: jeanclaude.assaf@ 123456net.usj.edu.lb ; Tel.: +961-70-891-797
                Author information
                https://orcid.org/0000-0002-7027-6067
                Article
                toxins-11-00304
                10.3390/toxins11060304
                6628408
                31146398
                854e316c-a661-494a-8886-e7934eaddf2d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 April 2019
                : 15 May 2019
                Categories
                Review

                Molecular medicine
                decontamination,mycotoxins,aflatoxin m1,milk,binding,stability
                Molecular medicine
                decontamination, mycotoxins, aflatoxin m1, milk, binding, stability

                Comments

                Comment on this article