Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at sqrt(s_NN) = 200 GeV

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      A new set of equations for relativistic viscous hydrodynamics that captures both weak-coupling and strong-coupling physics to second order in gradients has been developed recently. We apply this framework to bulk physics at RHIC, both for standard (Glauber-type) as well as for Color-Glass-Condensate initial conditions and show that the results do not depend strongly on the values for the second-order transport coefficients. Results for multiplicity, radial flow and elliptic flow are presented and we quote the ratio of viscosity over entropy density for which our hydrodynamic model is consistent with experimental data. For Color-Glass-Condensate initial conditions, early thermalization does not seem to be required in order for hydrodynamics to describe charged hadron elliptic flow.

      Related collections

      Most cited references 38

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

      The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of \(\hbar/4\pi k_B\) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti--de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        The order of the quantum chromodynamics transition predicted by the standard model of particle physics

         Y. Aoki,  K. Szabo,  S Katz (2006)
        We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Anisotropy as a signature of transverse collective flow

            Bookmark

            Author and article information

            Journal
            2008-04-25
            2009-04-21
            0804.4015
            10.1103/PhysRevC.78.034915

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            INT-08-07, NT-UW-08-10
            Phys.Rev.C78:034915,2008; Erratum-ibid.C79:039903,2009
            29 pages, 10 figures; v4: made corrections as described in published erratum (see note in manuscript); v3: changed title and other minor changes
            nucl-th hep-ph hep-th nucl-ex

            High energy & Particle physics, Nuclear physics

            Comments

            Comment on this article