Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of MALDI-TOF mass spectrometry for filariae detection in Aedes aegypti mosquitoes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is an emerging tool for routine identification of bacteria, archaea and fungi. It has also been recently applied as an accurate approach for arthropod identification. Preliminary studies have shown that the MALDI-TOF MS was able to differentiate whether ticks and mosquitoes were infected or not with some bacteria and Plasmodium parasites, respectively. The aim of the present study was to test the efficiency of MALDI-TOF MS tool in distinguishing protein profiles between uninfected mosquitoes from specimens infected by filarioid helminths. Aedes aegypti mosquitoes were engorged on microfilaremic blood infected with Dirofilaria immitis, Brugia malayi or Brugia pahangi. Fifteen days post-infective blood feeding, a total of 534 mosquitoes were killed by freezing. To assess mass spectra (MS) profile changes following filariae infections, one compartment (legs, thorax, head or thorax and head) per mosquito was submitted for MALDI-TOF MS analysis; the remaining body parts were used to establish filariae infectious status by real-time qPCR. A database of reference MS, based on the mass profiles of at least two individual mosquitoes per compartment, was created. Subsequently, the remaining compartment spectra (N = 350) from Ae. aegypti infected or not infected by filariae were blind tested against the spectral database. In total, 37 discriminating peak masses ranging from 2062 to 14869 daltons were identified, of which 17, 11, 12 and 7 peak masses were for legs, thorax, thorax-head and head respectively. Two peak masses (4073 and 8847 Da) were specific to spectra from Ae. aegypti infected with filariae, regardless of nematode species or mosquito compartment. The thorax-head part provided better classification with a specificity of 94.1% and sensitivity of 86.6, 71.4 and 68.7% of D. immitis, B. malayi and B. pahangi respectively. This study presents the potential of MALDI-TOF MS as a reliable tool for differentiating non-infected and filariae-infected Ae. aegypti mosquitoes. Considering that the results might vary in other mosquito species, further studies are needed to consolidate the obtained preliminary results before applying this tool in entomological surveillance as a fast mass screening method of filariosis vectors in endemic areas.

          Author summary

          Filariosis is a disease group affecting humans and animals, caused by nematode parasites of the family Onchocercidae, superfamily Filarioidea. These parasites can be transmitted, essentially, by mosquitoes during blood meals of infected female specimens. Screening vectors for these filariae currently relies on time- and resource-consuming methods such as dissection and polymerase chain reaction-based methods. Here, we applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to assess whether this tool can detect changes in the protein profiles of Aedes aegypti infected with filarioid helminths compared to those uninfected by testing different parts of mosquitoes. First a reference mass spectra database from Ae. aegypti infected or not infected by filariae was created using MS from 47 specimen compartments. Then we tested the remaining mass spectra (350 x 4) in a blind validation test. Regardless of filariae species, the best correct classification rate was obtained from the thorax-head part with a specificity of 94.1% and sensitivity of 86.6, 71.4 and 68.7% for non-infected and D. immitis, B. malayi and B. pahangi infected mosquitoes respectively. The results indicated that MALDI-TOF MS is potentially able to screen Aedes aegypti mosquitoes as being non-infected or filariae-infected. Furthermore, complementary works using other mosquito species infected with different filarioids are needed to reinforce these preliminary results prior to apply this tool on field samples.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

          Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Diagnostic tests. 1: Sensitivity and specificity.

             J Bland,  D Altman (1994)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human and animal dirofilariasis: the emergence of a zoonotic mosaic.

              Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SoftwareRole: Writing – original draft
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SoftwareRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: VisualizationRole: Writing – review & editing
                Role: Project administration
                Role: ConceptualizationRole: MethodologyRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                20 December 2017
                December 2017
                : 11
                : 12
                Affiliations
                [1 ] Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, AP-HM Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
                [2 ] Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
                [3 ] Ceva Santé Animale SA, Libourne, France
                Universidade Federal de Minas Gerais, BRAZIL
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PNTD-D-17-01359
                10.1371/journal.pntd.0006093
                5754087
                29261659
                © 2017 Tahir et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Counts
                Figures: 5, Tables: 3, Pages: 18
                Product
                Funding
                Funded by: Excellence Initiative of Aix-Marseille University - A*MIDEX
                Award ID: ANR-10-IAHU-03
                The project leading to this publication has received funding from the Excellence Initiative of Aix-Marseille University - A*MIDEX, a French state managed by the French National Research Agency under the “Investissements d’Avenir” program bearing the reference ANR-10-IAHU-03 and the Fondation Méditerranée Infection ( www.mediterranee-infection.com). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Physical Sciences
                Chemistry
                Analytical Chemistry
                Mass Spectrometry
                Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
                Research and Analysis Methods
                Spectrum Analysis Techniques
                Mass Spectrometry
                Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Brugia
                Brugia Malayi
                Medicine and Health Sciences
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Anatomy
                Thorax
                Medicine and Health Sciences
                Anatomy
                Thorax
                Medicine and Health Sciences
                Parasitic Diseases
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Parasitic Diseases
                Nematode Infections
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-01-04
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology

                Comments

                Comment on this article