13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: Implications for biogeography and palaeoecology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Taphonomic and ecologic information from bone weathering

          Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, including those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common rule for the scaling of carnivore density.

            Population density in plants and animals is thought to scale with size as a result of mass-related energy requirements. Variation in resources, however, naturally limits population density and may alter expected scaling patterns. We develop and test a general model for variation within and between species in population density across the order Carnivora. We find that 10,000 kilograms of prey supports about 90 kilograms of a given species of carnivore, irrespective of body mass, and that the ratio of carnivore number to prey biomass scales to the reciprocal of carnivore mass. Using mass-specific equations of prey productivity, we show that carnivore number per unit prey productivity scales to carnivore mass near -0.75, and that the scaling rule can predict population density across more than three orders of magnitude. The relationship provides a basis for identifying declining carnivore species that require conservation measures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The southern route "out of Africa": evidence for an early expansion of modern humans into Arabia.

              The timing of the dispersal of anatomically modern humans (AMH) out of Africa is a fundamental question in human evolutionary studies. Existing data suggest a rapid coastal exodus via the Indian Ocean rim around 60,000 years ago. We present evidence from Jebel Faya, United Arab Emirates, demonstrating human presence in eastern Arabia during the last interglacial. The tool kit found at Jebel Faya has affinities to the late Middle Stone Age in northeast Africa, indicating that technological innovation was not necessary to facilitate migration into Arabia. Instead, we propose that low eustatic sea level and increased rainfall during the transition between marine isotope stages 6 and 5 allowed humans to populate Arabia. This evidence implies that AMH may have been present in South Asia before the Toba eruption.
                Bookmark

                Author and article information

                Journal
                Quaternary Science Reviews
                Quaternary Science Reviews
                Elsevier BV
                02773791
                July 2016
                July 2016
                : 143
                :
                : 13-36
                Article
                10.1016/j.quascirev.2016.05.016
                85760bf1-bd91-40f8-a79b-e253a71674c2
                © 2016
                History

                Comments

                Comment on this article