+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      All the small things: How virus‐like particles and liposomes modulate allergic immune responses

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Recent years have seen a dramatic increase in the range of applications of virus‐like nanoparticle (VNP)‐ and liposome‐based antigen delivery systems for the treatment of allergies. These platforms rely on a growing number of inert virus‐backbones or distinct lipid formulations and intend to engage the host's innate and/or adaptive immune system by virtue of their co‐delivered immunogens. Due to their particulate nature, VNP and liposomal preparations are also capable of breaking tolerance against endogenous cytokines, Igs, and their receptors, allowing for the facile induction of anti‐cytokine, anti‐IgE, or anti‐FcεR antibodies in the host. We here discuss the “pros and cons” of inducing such neutralizing autoantibodies. Moreover, we cover another major theme of the last years, i.e., the engineering of non‐anaphylactogenic particles and the elucidation of the parameters relevant for the specific trafficking and processing of such particles in vivo. Finally, we put the various technical advances in VNP‐ and liposome‐research into (pre‐)clinical context by referring and critically discussing the relevant studies performed to treat allergic diseases.


          Virus‐like nanoparticles (VNP) and liposomes are innovative therapeutic platforms for the modulation of allergic immune responses. They variably deliver cues for innate‐, antigen‐, and cytokine‐receptors and thereby induce blocking antibodies (either against effector cytokines of allergens) and/or T cell tolerance.

          Related collections

          Most cited references 141

          • Record: found
          • Abstract: found
          • Article: not found

          A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.

          In the early stages of apoptosis changes occur at the cell surface, which until now have remained difficult to recognize. One of these plasma membrane alterations is the translocation of phosphatidylserine (PS) from the inner side of the plasma membrane to the outer layer, by which PS becomes exposed at the external surface of the cell. Annexin V is a Ca2+ dependent phospholipid-binding protein with high affinity for PS. Hence this protein can be used as a sensitive probe for PS exposure upon the cell membrane. Translocation of PS to the external cell surface is not unique to apoptosis, but occurs also during cell necrosis. The difference between these two forms of cell death is that during the initial stages of apoptosis the cell membrane remains intact, while at the very moment that necrosis occurs the cell membrane looses its integrity and becomes leaky. Therefore the measurement of Annexin V binding to the cell surface as indicative for apoptosis has to be performed in conjunction with a dye exclusion test to establish integrity of the cell membrane. This paper describes the results of such an assay, as obtained in cultured HSB-2 cells, rendered apoptotic by irradiation and in human lymphocytes, following dexamethasone treatment. Untreated and treated cells were evaluated for apoptosis by light microscopy, by measuring the amount of hypo-diploid cells using of DNA flow cytometry (FCM) and by DNA electrophoresis to establish whether or not DNA fragmentation had occurred. Annexin V binding was assessed using bivariate FCM, and cell staining was evaluated with fluorescein isothiocyanate (FITC)-labelled Annexin V (green fluorescence), simultaneously with dye exclusion of propidium iodide (PI) (negative for red fluorescence). The test described, discriminates intact cells (FITC-/PI-), apoptotic cells (FITC+/PI-) and necrotic cells (FITC+/PI+). In comparison with existing traditional tests the Annexin V assay is sensitive and easy to perform. The Annexin V assay offers the possibility of detecting early phases of apoptosis before the loss of cell membrane integrity and permits measurements of the kinetics of apoptotic death in relation to the cell cycle. More extensive FCM will allow discrimination between different cell subpopulations, that may or may not be involved in the apoptotic process.
            • Record: found
            • Abstract: found
            • Article: not found

            Lebrikizumab treatment in adults with asthma.

            Many patients with asthma have uncontrolled disease despite treatment with inhaled glucocorticoids. One potential cause of the variability in response to treatment is heterogeneity in the role of interleukin-13 expression in the clinical asthma phenotype. We hypothesized that anti-interleukin-13 therapy would benefit patients with asthma who had a pretreatment profile consistent with interleukin-13 activity. We conducted a randomized, double-blind, placebo-controlled study of lebrikizumab, a monoclonal antibody to interleukin-13, in 219 adults who had asthma that was inadequately controlled despite inhaled glucocorticoid therapy. The primary efficacy outcome was the relative change in prebronchodilator forced expiratory volume in 1 second (FEV(1)) from baseline to week 12. Among the secondary outcomes was the rate of asthma exacerbations through 24 weeks. Patient subgroups were prespecified according to baseline type 2 helper T-cell (Th2) status (assessed on the basis of total IgE level and blood eosinophil count) and serum periostin level. At baseline, patients had a mean FEV(1) that was 65% of the predicted value and were taking a mean dose of inhaled glucocorticoids of 580 μg per day; 80% were also taking a long-acting beta-agonist. At week 12, the mean increase in FEV(1) was 5.5 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.02). Among patients in the high-periostin subgroup, the increase from baseline FEV(1) was 8.2 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.03). Among patients in the low-periostin subgroup, the increase from baseline FEV(1) was 1.6 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.61). Musculoskeletal side effects were more common with lebrikizumab than with placebo (13.2% vs. 5.4%, P = 0.045). Lebrikizumab treatment was associated with improved lung function. Patients with high pretreatment levels of serum periostin had greater improvement in lung function with lebrikizumab than did patients with low periostin levels. (Funded by Genentech; ClinicalTrials.gov number, NCT00930163 .).
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Liposomes as nanomedical devices

              Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.

                Author and article information

                Eur J Immunol
                Eur. J. Immunol
                European Journal of Immunology
                John Wiley and Sons Inc. (Hoboken )
                15 December 2019
                January 2020
                : 50
                : 1 ( doiID: 10.1002/eji.v50.1 )
                : 17-32
                [ 1 ] Institute of Immunology Center for Pathophysiology Infectiology and Immunology Medical University of Vienna Austria
                Author notes
                [* ] Full correspondence Winfried F. Pickl, MD, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria

                Email: winfried.pickl@ 123456meduniwien.ac.at

                © 2019 The Authors. European Journal of Immunology published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 3, Tables: 3, Pages: 16, Words: 13165
                Funded by: Austrian Science Foundation
                Funded by: Austrian Science Fund , open-funder-registry 10.13039/501100002428;
                Award ID: DK‐W1248
                Award ID: Pickl
                Award ID: Winfried
                Award ID: SFB F4609
                Custom metadata
                January 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.5 mode:remove_FC converted:21.01.2020


                allergy, immunotherapy, neutralizing antibodies, liposomes, virus‐like particles


                Comment on this article