27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present here a novel, density-independent, FTIR-compatible and inexpensive approach for extracting microplastics from aquatic sediments.

          Abstract

          Microplastics have been detected in aquatic sediments around the world, highlighting the propensity of this matrix to serve as a sink for these structural pollutants. More reliable and reproducible extraction protocols for microplastics would facilitate comparisons across studies. A number of different extraction techniques are currently used to separate microplastics from sediment and almost exclusively employ density-based separations, which take advantage of the inherent densities of plastic particles. Some of these techniques are cost-effective but fail to fully recover all plastic types. Other techniques may recover most plastic types, but are more costly and/or hazardous to human or environmental health. We present here a novel, cost-effective oil extraction protocol (OEP) that provides an alternative to density-based approaches by taking advantage of the oleophilic properties of microplastics. Using this technique, we counted microplastic particles in spiked sediment samples using light microscopy and observed 96.1% ± 7.4 recovery for total microplastics, with recovery rates of 92.7% ± 4.3 for fibers and 99% ± 1.4 for particles. Subsequent analysis with Fourier-Transform Infrared Spectrometry (FTIR) revealed that the oil interfered with the FTIR spectrum of microplastics, but that an additional, post-extraction clean-up step using ethyl alcohol (90%) removed residual traces of oil and eliminated the FTIR spectral interference. The application of this new technique to shoreline sediment samples collected from sites in urban Vancouver, British Columbia, Canada, and a remote beach on Vancouver Island, as well as bulk seawater, demonstrated that the oil extraction protocol is effective for environmental samples. This novel OEP represents a cost-effective and reliable alternative to leading density-based techniques.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Microplastics in bivalves cultured for human consumption.

          Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

            Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, <5 mm. While macro-debris may sometimes be traced to its origin by object identification or markings, micro-debris, consisting of particles of two main varieties, (1) fragments broken from larger objects, and (2) resin pellets and powders, the basic thermoplastic industry feedstocks, are difficult to trace. Ingestion of plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified. Ingestion of degraded plastic pellets and fragments raises toxicity concerns, since plastics are known to adsorb hydrophobic pollutants. The potential bioavailability of compounds added to plastics at the time of manufacture, as well as those adsorbed from the environment are complex issues that merit more widespread investigation. The physiological effects of any bioavailable compounds desorbed from plastics by marine biota are being directly investigated, since it was found 20 years ago that the mass of ingested plastic in Great Shearwaters was positively correlated with PCBs in their fat and eggs. Colonization of plastic marine debris by sessile organisms provides a vector for transport of alien species in the ocean environment and may threaten marine biodiversity. There is also potential danger to marine ecosystems from the accumulation of plastic debris on the sea floor. The accumulation of such debris can inhibit gas exchange between the overlying waters and the pore waters of the sediments, and disrupt or smother inhabitants of the benthos. The extent of this problem and its effects have recently begun to be investigated. A little more than half of all thermoplastics will sink in seawater.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contributing to marine pollution by washing your face: microplastics in facial cleansers.

              Plastics pollution in the ocean is an area of growing concern, with research efforts focusing on both the macroplastic (>5mm) and microplastic (<5mm) fractions. In the 1990 s it was recognized that a minor source of microplastic pollution was derived from liquid hand-cleansers that would have been rarely used by the average consumer. In 2009, however, the average consumer is likely to be using microplastic-containing products on a daily basis, as the majority of facial cleansers now contain polyethylene microplastics which are not captured by wastewater plants and will enter the oceans. Four microplastic-containing facial cleansers available in New Zealand supermarkets were used to quantify the size of the polythelene fragments. Three-quarters of the brands had a modal size of <100 microns and could be immediately ingested by planktonic organisms at the base of the food chain. Over time the microplastics will be subject to UV-degradation and absorb hydrophobic materials such as PCBs, making them smaller and more toxic in the long-term. Marine scientists need to educate the public to the dangers of using products that pose an immediate and long-term threat to the health of the oceans and the food we eat.
                Bookmark

                Author and article information

                Journal
                AMNECT
                Analytical Methods
                Anal. Methods
                Royal Society of Chemistry (RSC)
                1759-9660
                1759-9679
                2017
                2017
                : 9
                : 9
                : 1419-1428
                Affiliations
                [1 ]Ocean Pollution Research Program
                [2 ]Coastal Ocean Research Institute
                [3 ]Vancouver Aquarium Marine Science Centre
                [4 ]Vancouver
                [5 ]Canada V6B 3X8
                Article
                10.1039/C6AY02733D
                858bf70d-1445-4280-b2bf-6e2ac2231094
                © 2017
                History

                Comments

                Comment on this article