58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation and Skeletal Muscle Wasting During Cachexia

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cachexia is the involuntary loss of muscle and adipose tissue that strongly affects mortality and treatment efficacy in patients with cancer or chronic inflammatory disease. Currently, no specific treatments or interventions are available for patients developing this disorder. Given the well-documented involvement of pro-inflammatory cytokines in muscle and fat metabolism in physiological responses and in the pathophysiology of chronic inflammatory disease and cancer, considerable interest has revolved around their role in mediating cachexia. This has been supported by association studies that report increased levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in some, but not all, cancers and in chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and rheumatoid arthritis (RA). In addition, preclinical studies including animal disease models have provided a substantial body of evidence implicating a causal contribution of systemic inflammation to cachexia. The presence of inflammatory cytokines can affect skeletal muscle through several direct mechanisms, relying on activation of the corresponding receptor expressed by muscle, and resulting in inhibition of muscle protein synthesis (MPS), elevation of catabolic activity through the ubiquitin-proteasomal system (UPS) and autophagy, and impairment of myogenesis. Additionally, systemic inflammatory mediators indirectly contribute to muscle wasting through dysregulation of tissue and organ systems, including GCs via the hypothalamus-pituitary-adrenal (HPA) axis, the digestive system leading to anorexia-cachexia, and alterations in liver and adipocyte behavior, which subsequently impact on muscle. Finally, myokines secreted by skeletal muscle itself in response to inflammation have been implicated as autocrine and endocrine mediators of cachexia, as well as potential modulators of this debilitating condition. While inflammation has been shown to play a pivotal role in cachexia development, further understanding how these cytokines contribute to disease progression is required to reveal biomarkers or diagnostic tools to help identify at risk patients, or enable the design of targeted therapies to prevent or delay the progression of cachexia.

          Related collections

          Most cited references261

          • Record: found
          • Abstract: found
          • Article: not found

          Definition and classification of cancer cachexia: an international consensus.

          To develop a framework for the definition and classification of cancer cachexia a panel of experts participated in a formal consensus process, including focus groups and two Delphi rounds. Cancer cachexia was defined as a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment. Its pathophysiology is characterised by a negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. The agreed diagnostic criterion for cachexia was weight loss greater than 5%, or weight loss greater than 2% in individuals already showing depletion according to current bodyweight and height (body-mass index [BMI] <20 kg/m(2)) or skeletal muscle mass (sarcopenia). An agreement was made that the cachexia syndrome can develop progressively through various stages--precachexia to cachexia to refractory cachexia. Severity can be classified according to degree of depletion of energy stores and body protein (BMI) in combination with degree of ongoing weight loss. Assessment for classification and clinical management should include the following domains: anorexia or reduced food intake, catabolic drive, muscle mass and strength, functional and psychosocial impairment. Consensus exists on a framework for the definition and classification of cancer cachexia. After validation, this should aid clinical trial design, development of practice guidelines, and, eventually, routine clinical management. Copyright © 2011 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            MAPK signal pathways in the regulation of cell proliferation in mammalian cells.

            MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.
              • Record: found
              • Abstract: found
              • Article: not found

              eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.

              Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                19 November 2020
                2020
                : 11
                : 597675
                Affiliations
                [1] 1Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht, Netherlands
                [2] 2Institute of Metabolism and Systems Research, University of Birmingham , Birmingham, United Kingdom
                [3] 3Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners , Birmingham, United Kingdom
                [4] 4Institute for Clinical Sciences, University of Birmingham , Birmingham, United Kingdom
                [5] 5MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham , Birmingham, United Kingdom
                Author notes

                Edited by: Nicolas J. Pillon, Karolinska Institutet (KI), Sweden

                Reviewed by: Andrea Bonetto, Indiana University, United States; Melissa Puppa, University of Memphis, United States

                *Correspondence: Ramon C. J. Langen, r.langen@ 123456maastrichtuniversity.nl

                This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.597675
                7710765
                33329046
                858c7378-0e56-45d6-8179-e739e4c6e894
                Copyright © 2020 Webster, Kempen, Hardy and Langen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 August 2020
                : 19 October 2020
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 261, Pages: 22, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                cachexia,inflammation,muscle wasting,atrophy,cancer,copd,cytokines
                Anatomy & Physiology
                cachexia, inflammation, muscle wasting, atrophy, cancer, copd, cytokines

                Comments

                Comment on this article

                Related Documents Log