48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The host immune response in respiratory virus infection: balancing virus clearance and immunopathology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The respiratory tract is constantly exposed to the external environment, and therefore, must be equipped to respond to and eliminate pathogens. Viral clearance and resolution of infection requires a complex, multi-faceted response initiated by resident respiratory tract cells and innate immune cells and ultimately resolved by adaptive immune cells. Although an effective immune response to eliminate viral pathogens is essential, a prolonged or exaggerated response can damage the respiratory tract. Immune-mediated pulmonary damage is manifested clinically in a variety of ways depending on location and extent of injury. Thus, the antiviral immune response represents a balancing act between the elimination of virus and immune-mediated pulmonary injury. In this review, we highlight major components of the host response to acute viral infection and their role in contributing to mitigating respiratory damage. We also briefly describe common clinical manifestations of respiratory viral infection and morphological correlates. The continuing threat posed by pandemic influenza as well as the emergence of novel respiratory viruses also capable of producing severe acute lung injury such as SARS-CoV, MERS-CoV, and enterovirus D68, highlights the need for an understanding of the immune mechanisms that contribute to virus elimination and immune-mediated injury.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Antiviral actions of interferons.

          C Samuel (2001)
          Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alveolar macrophages: plasticity in a tissue-specific context.

            Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial Cells Are Central Orchestrators of Cytokine Amplification during Influenza Virus Infection

              Summary Cytokine storm during viral infection is a prospective predictor of morbidity and mortality, yet the cellular sources remain undefined. Here, using genetic and chemical tools to probe functions of the S1P1 receptor, we elucidate cellular and signaling mechanisms that are important in initiating cytokine storm. Whereas S1P1 receptor is expressed on endothelial cells and lymphocytes within lung tissue, S1P1 agonism suppresses cytokines and innate immune cell recruitment in wild-type and lymphocyte-deficient mice, identifying endothelial cells as central regulators of cytokine storm. Furthermore, our data reveal immune cell infiltration and cytokine production as distinct events that are both orchestrated by endothelial cells. Moreover, we demonstrate that suppression of early innate immune responses through S1P1 signaling results in reduced mortality during infection with a human pathogenic strain of influenza virus. Modulation of endothelium with a specific agonist suggests that diseases in which amplification of cytokine storm is a significant pathological component could be chemically tractable.
                Bookmark

                Author and article information

                Contributors
                434-924-1219 , tjb2r@virginia.edu
                Journal
                Semin Immunopathol
                Semin Immunopathol
                Seminars in Immunopathology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1863-2297
                1863-2300
                10 March 2016
                10 March 2016
                2016
                : 38
                : 471-482
                Affiliations
                [ ]Beirne B. Carter Center for Immunology Research, University of Virginia, P.O. Box 801386, Charlottesville, VA 22908 USA
                [ ]Department of Pathology, University of Virginia, Charlottesville, VA USA
                [ ]Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
                Article
                558
                10.1007/s00281-016-0558-0
                4896975
                26965109
                85921a35-9c3e-463f-ba13-c5febea89e64
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 29 December 2015
                : 16 February 2016
                Categories
                Review
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Pathology
                lungs,respiratory infection,virus,influenza,inflammatory response
                Pathology
                lungs, respiratory infection, virus, influenza, inflammatory response

                Comments

                Comment on this article