36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2 +/− mice, but not in Sglt2 −/− mice. However, serum GTTR levels were elevated in Sglt2 −/− mice compared to Sglt2 +/− mice, and in phlorizin-treated Sglt2 +/− mice compared to vehicle-treated Sglt2 +/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Phlorizin: a review.

          The dihydrochalcone phlorizin is a natural product and dietary constituent found in a number of fruit trees. It has been used as a pharmaceutical and tool for physiology research for over 150 years. Phlorizin's principal pharmacological action is to produce renal glycosuria and block intestinal glucose absorption through inhibition of the sodium-glucose symporters located in the proximal renal tubule and mucosa of the small intestine. This review covers the role phlorizin has played in the history of diabetes mellitus and its use as an agent to understand fundamental concepts in renal physiology as well as summarizes the physiology of cellular glucose transport and the pathophysiology of renal glycosuria. It reviews the biology and pathobiology of glucose transporters and discusses the medical botany of phlorizin and the potential effects of plant flavonoids, such as phlorizin, on human metabolism. Lastly, it describes the clinical pharmacology and toxicology of phlorizin, including investigational uses of phlorizin and phlorizin analogs in the treatment of diabetes, obesity, and stress hyperglycemia. Copyright (c) 2004 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Aminoglycosides: nephrotoxicity.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels.

              We describe a novel mechanism for vital fluorescent dye entry into sensory cells and neurons: permeation through ion channels. In addition to the slow conventional uptake of styryl dyes by endocytosis, small styryl dyes such as FM1-43 rapidly and specifically label hair cells in the inner ear by entering through open mechanotransduction channels. This labeling can be blocked by pharmacological or mechanical closing of the channels. This phenomenon is not limited to hair cell transduction channels, because human embryonic kidney 293T cells expressing the vanilloid receptor (TRPV1) or a purinergic receptor (P2X2) rapidly take up FM1-43 when those receptor channels are opened and not when they are pharmacologically blocked. This channel permeation mechanism can also be used to label many sensory cell types in vivo. A single subcutaneous injection of FM1-43 (3 mg/kg body weight) in mice brightly labels hair cells, Merkel cells, muscle spindles, taste buds, enteric neurons, and primary sensory neurons within the cranial and dorsal root ganglia, persisting for several weeks. The pattern of labeling is specific; nonsensory cells and neurons remain unlabeled. The labeling of the sensory neurons requires dye entry through the sensory terminal, consistent with permeation through the sensory channels. This suggests that organic cationic dyes are able to pass through a number of different sensory channels. The bright and specific labeling with styryl dyes provides a novel way to study sensory cells and neurons in vivo and in vitro, and it offers new opportunities for visually assaying sensory channel function.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                30 September 2014
                : 9
                : 9
                : e108941
                Affiliations
                [1 ]Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
                [2 ]Department of Otorhinolaryngology, Seoul National University College of Medicine, Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
                Universtiy of Maryland School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PSS MJ QW. Performed the experiments: MJ QW TK JK HL PSS. Analyzed the data: MJ PSS QW. Contributed reagents/materials/analysis tools: MJ QW. Wrote the paper: MJ PSS.

                Article
                PONE-D-14-21632
                10.1371/journal.pone.0108941
                4182564
                25268124
                859707dc-a21a-419c-9ca8-b692f1dbf1a6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 May 2014
                : 26 August 2014
                Page count
                Pages: 14
                Funding
                The colony-founding Sglt2+/− mice were a gift of the Wellcome Trust Sanger Institute (Hinxton, Cambridge, UK). This work was supported by NIH-NDCD grants R01 DC004555, R01 DC012588 (PSS), R03 DC011622 (HL), and P30 DC005983 [URL: https://www.nidcd.nih.gov/]. The funding agencies had no role in study design, data collection and analysis, preparation of the manuscript, or decision to publish.
                Categories
                Research Article
                Biology and Life Sciences
                Physiology
                Medicine and Health Sciences
                Otorhinolaryngology
                Pharmacology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article