33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impacts of Ocean Acidification on Early Life-History Stages and Settlement of the Coral-Eating Sea Star Acanthaster planci

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO 2 to 900–1200 µatm pCO 2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO 2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of near-future ocean acidification on echinoderms.

          As a consequence of increasing atmospheric CO(2), the world's oceans are warming and slowly becoming more acidic (ocean acidification, OA) and profound changes in marine ecosystems are certain. Calcification is one of the primary targets for studies of the impact of CO(2)-driven climate change in the oceans and one of the key marine groups most likely to be impacted by predicted climate change events are the echinoderms. Echinoderms are a vital component of the marine environment with representatives in virtually every ecosystem, where they are often keystone ecosystem engineers. This paper reviews and analyses what is known about the impact of near-future ocean acidification on echinoderms. A global analysis of the literature reveals that echinoderms are surprisingly robust to OA and that important differences in sensitivity to OA are observed between populations and species. However, this is modulated by parameters such as (1) exposure time with rare longer term experiments revealing negative impacts that are hidden in short or midterm ones; (2) bottlenecks in physiological processes and life-cycle such as stage-specific developmental phenomena that may drive the whole species responses; (3) ecological feedback transforming small scale sub lethal effects into important negative effects on fitness. We hypothesize that populations/species naturally exposed to variable environmental pH conditions may be pre-adapted to future OA highlighting the importance to understand and monitor environmental variations in order to be able to to predict sensitivity to future climate changes. More stress ecology research is needed at the frontier between ecotoxicology and ecology, going beyond standardized tests using model species in order to address multiple water quality factors (e.g. pH, temperature, toxicants) and organism health. However, available data allow us to conclude that near-future OA will have negative impact on echinoderm taxa with likely significant consequences at the ecosystem level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification

            The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO2 conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO2 conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Near-future levels of ocean acidification reduce fertilization success in a sea urchin.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                16 December 2013
                : 8
                : 12
                : e82938
                Affiliations
                [1 ]Australian Institute of Marine Science, Townsville, Queensland, Australia
                [2 ]Department of Marine Biology, University of Otago, Dunedin, Otago, New Zealand
                [3 ]National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
                [4 ]Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
                University of New South Wales, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SU, DP, RA, AN, M. Lamare, MB. Performed the experiments: SU, DP, RA, AN, NC, M. Liddy, SD, PK, MB. Analyzed the data: SU, DP, RA, M. Lamare. Contributed reagents/materials/analysis tools: SD. Wrote the paper: SU, DP, RA, AN, NC, M. Lamare, MB.

                [¤]

                Current address: Department of Earth, Life and Environment Sciences, University of Genoa, Genoa, Italy

                Article
                PONE-D-13-39491
                10.1371/journal.pone.0082938
                3865153
                24358240
                859932ac-3c9d-4764-86be-2980cc7cf8df
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 September 2013
                : 7 November 2013
                Page count
                Pages: 9
                Funding
                The study was funded from appropriation funding of the Australian Institute of Marine Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article