98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global capacity for emerging infectious disease detection

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing number of emerging infectious disease events that have spread internationally, such as severe acute respiratory syndrome (SARS) and the 2009 pandemic A/H1N1, highlight the need for improvements in global outbreak surveillance. It is expected that the proliferation of Internet-based reports has resulted in greater communication and improved surveillance and reporting frameworks, especially with the revision of the World Health Organization's (WHO) International Health Regulations (IHR 2005), which went into force in 2007. However, there has been no global quantitative assessment of whether and how outbreak detection and communication processes have actually changed over time. In this study, we analyzed the entire WHO public record of Disease Outbreak News reports from 1996 to 2009 to characterize spatial-temporal trends in the timeliness of outbreak discovery and public communication about the outbreak relative to the estimated outbreak start date. Cox proportional hazards regression analyses show that overall, the timeliness of outbreak discovery improved by 7.3% [hazard ratio (HR) = 1.073, 95% CI (1.038; 1.110)] per year, and public communication improved by 6.2% [HR = 1.062, 95% CI (1.028; 1.096)] per year. However, the degree of improvement varied by geographic region; the only WHO region with statistically significant (α = 0.05) improvement in outbreak discovery was the Western Pacific region [HR = 1.102 per year, 95% CI (1.008; 1.205)], whereas the Eastern Mediterranean [HR = 1.201 per year, 95% CI (1.066; 1.353)] and Western Pacific regions [HR = 1.119 per year, 95% CI (1.025; 1.221)] showed improvement in public communication. These findings provide quantitative historical assessment of timeliness in infectious disease detection and public reporting of outbreaks.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Digital disease detection--harnessing the Web for public health surveillance.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spread of a novel influenza A (H1N1) virus via global airline transportation.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports

              Objective Unstructured electronic information sources, such as news reports, are proving to be valuable inputs for public health surveillance. However, staying abreast of current disease outbreaks requires scouring a continually growing number of disparate news sources and alert services, resulting in information overload. Our objective is to address this challenge through the HealthMap.org Web application, an automated system for querying, filtering, integrating and visualizing unstructured reports on disease outbreaks. Design This report describes the design principles, software architecture and implementation of HealthMap and discusses key challenges and future plans. Measurements We describe the process by which HealthMap collects and integrates outbreak data from a variety of sources, including news media (e.g., Google News), expert-curated accounts (e.g., ProMED Mail), and validated official alerts. Through the use of text processing algorithms, the system classifies alerts by location and disease and then overlays them on an interactive geographic map. We measure the accuracy of the classification algorithms based on the level of human curation necessary to correct misclassifications, and examine geographic coverage. Results As part of the evaluation of the system, we analyzed 778 reports with HealthMap, representing 87 disease categories and 89 countries. The automated classifier performed with 84% accuracy, demonstrating significant usefulness in managing the large volume of information processed by the system. Accuracy for ProMED alerts is 91% compared to Google News reports at 81%, as ProMED messages follow a more regular structure. Conclusion HealthMap is a useful free and open resource employing text-processing algorithms to identify important disease outbreak information through a user-friendly interface.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 14 2010
                December 14 2010
                November 29 2010
                December 14 2010
                : 107
                : 50
                : 21701-21706
                Article
                10.1073/pnas.1006219107
                3003006
                21115835
                85acd7a7-64cb-4ee4-819c-e478566e4e4d
                © 2010
                History

                Comments

                Comment on this article