1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical Activity, Exercise Prescription for Health and Home-Based Rehabilitation

      , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this overview was to recommend individual training plans using exercise prescriptions for adults and older adults during home-based rehabilitation. Over the last decade, many regular physical activity studies with large prospective cohorts have been conducted. Taken together, more than a million subjects have been included in these exercise studies. The risk of morbidity and mortality has been reduced by 30% to 40% as a result of exercise. These risk reductions hold true for many diseases, as well as for prevention and rehabilitation. Physical activity has also been in the treatment of many diseases, such as cardiopulmonary, metabolic or neurologic/psychiatric diseases, all with positive results. Based on these results, the prescription of exercise was developed and is now known as the exercise prescription for health in many European countries. Details have been published by the European Federation of Sports Medicine Associations (EFSMA). The exercise prescription is strongly recommended for inpatients, discharged patients and outpatients who have recovered from severe diseases. Rehabilitation improves general health, physical fitness, quality of life and may increase longevity of life.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity).

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomics and genetics in the biology of adaptation to exercise.

            This article is devoted to the role of genetic variation and gene-exercise interactions in the biology of adaptation to exercise. There is evidence from genetic epidemiology research that DNA sequence differences contribute to human variation in physical activity level, cardiorespiratory fitness in the untrained state, cardiovascular and metabolic response to acute exercise, and responsiveness to regular exercise. Methodological and technological advances have made it possible to undertake the molecular dissection of the genetic component of complex, multifactorial traits, such as those of interest to exercise biology, in terms of tissue expression profile, genes, and allelic variants. The evidence from animal models and human studies is considered. Data on candidate genes, genome-wide linkage results, genome-wide association findings, expression arrays, and combinations of these approaches are reviewed. Combining transcriptomic and genomic technologies has been shown to be more powerful as evidenced by the development of a recent molecular predictor of the ability to increase VO2max with exercise training. For exercise as a behavior and physiological fitness as a state to be major players in public health policies will require that the role of human individuality and the influence of DNA sequence differences be understood. Likewise, progress in the use of exercise in therapeutic medicine will depend to a large extent on our ability to identify the favorable responders for given physiological properties to a given exercise regimen. © 2011 American Physiological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards a personalised approach in exercise-based cardiovascular rehabilitation: How can translational research help? A ‘call to action’ from the Section on Secondary Prevention and Cardiac Rehabilitation of the European Association of Preventive Cardiology

              The benefit of regular physical activity and exercise training for the prevention of cardiovascular and metabolic diseases is undisputed. Many molecular mechanisms mediating exercise effects have been deciphered. Personalised exercise prescription can help patients in achieving their individual greatest benefit from an exercise-based cardiovascular rehabilitation programme. Yet, we still struggle to provide truly personalised exercise prescriptions to our patients. In this position paper, we address novel basic and translational research concepts that can help us understand the principles underlying the inter-individual differences in the response to exercise, and identify early on who would most likely benefit from which exercise intervention. This includes hereditary, non-hereditary and sex-specific concepts. Recent insights have helped us to take on a more holistic view, integrating exercise-mediated molecular mechanisms with those influenced by metabolism and immunity. Unfortunately, while the outline is recognisable, many details are still lacking to turn the understanding of a concept into a roadmap ready to be used in clinical routine. This position paper therefore also investigates perspectives on how the advent of ‘big data’ and the use of animal models could help unravel inter-individual responses to exercise parameters and thus influence hypothesis-building for translational research in exercise-based cardiovascular rehabilitation.
                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                December 2020
                December 08 2020
                : 12
                : 24
                : 10230
                Article
                10.3390/su122410230
                85ad7125-6ddc-42a6-9b27-2ed12cc5ac9c
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article