5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of the novel COL5A1 c.3369_3431dup, p.(Glu1124_Gly1144dup) variant in a patient with incomplete classical Ehlers–Danlos syndrome: The importance of phenotype‐guided genetic testing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Classical Ehlers–Danlos syndrome (cEDS) is a connective tissue disorder mainly caused by heterozygous COL5A1 or COL5A2 variants encoding type V collagen and rarely by the p.(Arg312Cys) missense substitution in COL1A1 encoding type I collagen. The current EDS nosology specifies that minimal suggestive criteria are marked skin hyperextensibility plus atrophic scarring together with either generalized joint hypermobility or at least three minor criteria comprising additional cutaneous and articular signs. To reach a final diagnosis, molecular testing is required. Herein, we report on a 3‐year‐old female who came to our attention with an inconclusive next generation sequencing (NGS) panel comprising all cEDS‐associated genes.

          Methods

          Despite the patient did not formally fulfill the nosological criteria because the skin was only slightly hyperextensible, we made a cEDS diagnosis, mainly for the presence of typical atrophic scars. We investigated COL5A1 intragenic deletions/duplications by Multiplex Ligation‐dependent Probe Amplification (MLPA), excluded the recessive classical‐like EDS type 2 by AEBP1 Sanger analysis, and retested COL5A1 with the Sanger method.

          Results

          Molecular analyses revealed the novel COL5A1 c.3369_3431dup p.(Glu1124_Gly1144dup) intermediate‐sized duplication with a predicted dominant negative effect that was missed both by NGS and MLPA.

          Conclusions

          This report highlights that some cEDS patients might not display overt skin hyperextensibility and the importance of clinical expertise to make such a diagnosis in patients with an incomplete presentation. Our results also exemplify that NGS is not a fool‐proof technology and that Sanger sequencing achieves the diagnostic goal when there is a sufficiently clear phenotypic indication.

          Abstract

          We report on a pediatric patient with skin fragility suggestive for classical Ehlers–Danlos syndrome (cEDS) but without marked skin hyperextensibility, who came to our attention with unconvincing results of an external next generation sequencing (NGS) panel that included all cEDS‐associated genes. Based on a phenotype‐first approach, mainly due to the presence of typical atrophic scars, we made a clinical diagnosis of cEDS. We explored for an intragenic rearrangement in COL5A1 by MLPA, ruled out the classical‐like EDS type 2 by sequencing of AEBP1, and finally resequenced COL5A1 with the Sanger method that documented a novel intragenic duplication. Our findings show that in some cEDS patients the skin might not be markedly hyperextensible and that the cutaneous hallmark of the disorder is characterized by the presence of multiple, widened atrophic scars. This report is also a good example on how the new sequencing technologies are not foolproof and suggest that clinicians should look beyond negative NGS testing when there is a sufficiently clear phenotypic indication.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

            The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 2017 international classification of the Ehlers-Danlos syndromes.

              The Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen-encoding genes, or in genes encoding collagen-modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes. © 2017 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                marina.colombi@unibs.it
                Journal
                Mol Genet Genomic Med
                Mol Genet Genomic Med
                10.1002/(ISSN)2324-9269
                MGG3
                Molecular Genetics & Genomic Medicine
                John Wiley and Sons Inc. (Hoboken )
                2324-9269
                28 July 2020
                October 2020
                : 8
                : 10 ( doiID: 10.1002/mgg3.v8.10 )
                : e1422
                Affiliations
                [ 1 ] Division of Biology and Genetics Department of Molecular and Translational Medicine University of Brescia Brescia Italy
                [ 2 ] Division of Dermatology Department of Clinical and Experimental Sciences Spedali Civili University Hospital Brescia Italy
                Author notes
                [*] [* ] Correspondence

                Marina Colombi, Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.

                Email: marina.colombi@ 123456unibs.it

                Author information
                https://orcid.org/0000-0002-7025-2495
                https://orcid.org/0000-0002-1545-4801
                https://orcid.org/0000-0002-3105-5990
                Article
                MGG31422
                10.1002/mgg3.1422
                7549590
                32720758
                85b1dfab-51e2-4658-b727-bf23b094e863
                © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 May 2020
                : 02 June 2020
                : 02 July 2020
                Page count
                Figures: 2, Tables: 0, Pages: 8, Words: 11549
                Categories
                Clinical Report
                Clinical Reports
                Custom metadata
                2.0
                October 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.2 mode:remove_FC converted:12.10.2020

                atrophic scars,classical ehlers–danlos syndrome,col5a1,next generation sequencing,sanger sequencing,skin hyperextensibility

                Comments

                Comment on this article