10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sound physiological knowledge and principles in modeling shrinking of fishes under climate change

      ,
      Global Change Biology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the main expected responses of marine fishes to ocean warming is decrease in body size, as supported by evidence from empirical data and theoretical modeling. The theoretical underpinning for fish shrinking is that the oxygen supply to large fish size cannot be met by their gills, whose surface area cannot keep up with the oxygen demand by their three-dimensional bodies. However, Lefevre et al. (Global Change Biology, 2017, 23, 3449-3459) argue against such theory. Here, we re-assert, with the Gill-Oxygen Limitation Theory (GOLT), that gills, which must retain the properties of open surfaces because their growth, even while hyperallometric, cannot keep up with the demand of growing three-dimensional bodies. Also, we show that a wide range of biological features of fish and other water-breathing organisms can be understood when gill area limitation is used as an explanation. We also note that an alternative to GOLT, offering a more parsimonious explanation for these features of water-breathers has not been proposed. Available empirical evidence corroborates predictions of decrease in body sizes under ocean warming based on GOLT, with the magnitude of the predicted change increases when using more species-specific parameter values of metabolic scaling.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

          A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations

            R Froese (2006)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global warming benefits the small in aquatic ecosystems.

              Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature-size relationships (i.e., Bergmann's rule, James' rule and Temperature-Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.
                Bookmark

                Author and article information

                Journal
                Global Change Biology
                Glob Change Biol
                Wiley-Blackwell
                13541013
                January 2018
                January 21 2018
                : 24
                : 1
                : e15-e26
                Article
                10.1111/gcb.13831
                28833977
                85b51325-6f4f-4284-aa23-4cdeacbf25b5
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article