3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ethanol- and Cigarette Smoke-Related Alternations in Oral Redox Homeostasis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alcohol abuse as well as smoking cigarettes has been proven to negatively affect the oral environment. The aim of this work was to provide a systematic review of the literature on the influence of ethanol and cigarette smoking on oral redox homeostasis. A search was performed for scientific articles indexed in the PubMed, Medline and Web of Science databases. We identified 32,300 articles, of which 54 were used for the final review, including the results from 2000 to 2021. Among the publications used to write this article, n = 14 were related to the influence of alcohol consumption (clinical studies n = 6, experimental studies n = 8) and n = 40 were related to the influence of smoking (clinical studies n = 33, experimental studies n = 7) on oral redox homeostasis. The reviewed literature indicates that alcohol abusers and smokers are more likely to suffer from salivary gland dysfunction, as well as develop precancerous lesions due to DNA damage. Compared to alcohol abstainers and non-smokers, alcohol drinkers and smokers are also characterized by a deterioration in periodontal health measured by various indicators of periodontal status. In summary, alcohol abuse and smoking are associated with disrupted oral redox homeostasis, which may lead not only to tooth loss, but also contribute to various adverse effects related to mental health, digestive processes and chronic inflammation throughout the human body.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative Stress and Antioxidant Defense

          Abstract Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state is critical for cell viability, activation, proliferation, and organ function. Aerobic organisms have integrated antioxidant systems, which include enzymatic and nonenzymatic antioxidants that are usually effective in blocking harmful effects of ROS. However, in pathological conditions, the antioxidant systems can be overwhelmed. Oxidative stress contributes to many pathological conditions and diseases, including cancer, neurological disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. In this review, we summarize the cellular oxidant and antioxidant systems and discuss the cellular effects and mechanisms of the oxidative stress.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Effects of Cadmium Toxicity

              Cadmium (Cd) is a toxic non-essential transition metal that poses a health risk for both humans and animals. It is naturally occurring in the environment as a pollutant that is derived from agricultural and industrial sources. Exposure to cadmium primarily occurs through the ingestion of contaminated food and water and, to a significant extent, through inhalation and cigarette smoking. Cadmium accumulates in plants and animals with a long half-life of about 25–30 years. Epidemiological data suggest that occupational and environmental cadmium exposure may be related to various types of cancer, including breast, lung, prostate, nasopharynx, pancreas, and kidney cancers. It has been also demonstrated that environmental cadmium may be a risk factor for osteoporosis. The liver and kidneys are extremely sensitive to cadmium’s toxic effects. This may be due to the ability of these tissues to synthesize metallothioneins (MT), which are Cd-inducible proteins that protect the cell by tightly binding the toxic cadmium ions. The oxidative stress induced by this xenobiotic may be one of the mechanisms responsible for several liver and kidney diseases. Mitochondria damage is highly plausible given that these organelles play a crucial role in the formation of ROS (reactive oxygen species) and are known to be among the key intracellular targets for cadmium. When mitochondria become dysfunctional after exposure to Cd, they produce less energy (ATP) and more ROS. Recent studies show that cadmium induces various epigenetic changes in mammalian cells, both in vivo and in vitro, causing pathogenic risks and the development of various types of cancers. The epigenetics present themselves as chemical modifications of DNA and histones that alter the chromatin without changing the sequence of the DNA nucleotide. DNA methyltransferase, histone acetyltransferase, histone deacetylase and histone methyltransferase, and micro RNA are involved in the epigenetic changes. Recently, investigations of the capability of sunflower (Helianthus annuus L.), Indian mustard (Brassica juncea), and river red gum (Eucalyptus camaldulensis) to remove cadmium from polluted soil and water have been carried out. Moreover, nanoparticles of TiO2 and Al2O3 have been used to efficiently remove cadmium from wastewater and soil. Finally, microbial fermentation has been studied as a promising method for removing cadmium from food. This review provides an update on the effects of Cd exposure on human health, focusing on the cellular and molecular alterations involved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                28 January 2022
                2021
                : 12
                : 793028
                Affiliations
                [1] 1Doctoral School, Medical University of Bialystok , Bialystok, Poland
                [2] 2Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok , Bialystok, Poland
                [3] 3Independent Laboratory of Experimental Dentistry, Medical University of Bialystok , Bialystok, Poland
                [4] 4Department of Restorative Dentistry, Medical University of Bialystok , Bialystok, Poland
                Author notes

                Edited by: Moran Benhar, Technion Israel Institute of Technology, Israel

                Reviewed by: Peter Celec, Comenius University, Slovakia; Demetrios Kouretas, University of Thessaly, Greece

                This article was submitted to Redox Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2021.793028
                8832011
                35153810
                85b538ab-f857-4eca-adea-8b54b476aae4
                Copyright © 2022 Zięba, Maciejczyk and Zalewska.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 October 2021
                : 13 December 2021
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 180, Pages: 19, Words: 17212
                Categories
                Physiology
                Review

                Anatomy & Physiology
                smoking,alcohol,oxidative stress,free radicals,salivary antioxidants
                Anatomy & Physiology
                smoking, alcohol, oxidative stress, free radicals, salivary antioxidants

                Comments

                Comment on this article