10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Beyond Biology: The Crucial Role of Sex and Gender in Oncology

      Submit here before May 31, 2024

      About Oncology Research and Treatment: 2.4 Impact Factor I 3.3 CiteScore I 0.495 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Sepsis: Going to the Heart of the Matter

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although myocardial depression is the predominant cause of death in severe sepsis/septic shock, it remains disputed whether the functional changes are a consequence of structural alterations. If we look at myocardial dysfunction from the perspective of a critically ill patient, there are a few questions to be asked: What causes myocardial dysfunction? What is the pathophysiology of cardiac dysfunction and death? Is there something that could be done to prevent the outcome? Each of these questions is interrelated and the answers will be more easily addressed if we continue to understand the basic mechanisms that are implicated. The principal mechanisms proposed for the pathogenesis of myocardial dysfunction support a prominent role for functional rather than anatomical abnormalities. However, attempts to reduce the high mortality in septic patients by manipulating the functional alterations have provided limited success. In recent years, the concept of septic cardiomyopathy has evolved, which implies alterations in the myocardial phenotype. This review includes an overview on the activation of the immune system and therapeutic approaches in sepsis, myocardial structural changes in the human septic heart, experimental models of sepsis, and cellular, molecular and functional myocardial changes seen in a variety of experimental sepsis models. The abnormal parameters discussed may emerge as therapeutic targets, for which modulation might provide beneficial effects on cardiovascular outcome and mortality in sepsis in the future.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Septic shock.

          Septic shock, the most severe complication of sepsis, is a deadly disease. In recent years, exciting advances have been made in the understanding of its pathophysiology and treatment. Pathogens, via their microbial-associated molecular patterns, trigger sequential intracellular events in immune cells, epithelium, endothelium, and the neuroendocrine system. Proinflammatory mediators that contribute to eradication of invading microorganisms are produced, and anti-inflammatory mediators control this response. The inflammatory response leads to damage to host tissue, and the anti-inflammatory response causes leucocyte reprogramming and changes in immune status. The time-window for interventions is short, and treatment must promptly control the source of infection and restore haemodynamic homoeostasis. Further research is needed to establish which fluids and vasopressors are best. Some patients with septic shock might benefit from drugs such as corticosteroids or activated protein C. Other therapeutic strategies are under investigation, including those that target late proinflammatory mediators, endothelium, or the neuroendocrine system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis

            Objective The Surviving Sepsis Campaign (SSC or “the Campaign”) developed guidelines for management of severe sepsis and septic shock. A performance improvement initiative targeted changing clinical behavior (process improvement) via bundles based on key SSC guideline recommendations on process improvement and patient outcomes. Design and setting A multifaceted intervention to facilitate compliance with selected guideline recommendations in the ICU, ED, and wards of individual hospitals and regional hospital networks was implemented voluntarily in the US, Europe, and South America. Elements of the guidelines were “bundled” into two sets of targets to be completed within 6 h and within 24 h. An analysis was conducted on data submitted from January 2005 through March 2008. Main results Data from 15,022 subjects at 165 sites were analyzed to determine the compliance with bundle targets and association with hospital mortality. Compliance with the entire resuscitation bundle increased linearly from 10.9% in the first site quarter to 31.3% by the end of 2 years (P < 0.0001). Compliance with the entire management bundle started at 18.4% in the first quarter and increased to 36.1% by the end of 2 years (P = 0.008). Compliance with all bundle elements increased significantly, except for inspiratory plateau pressure, which was high at baseline. Unadjusted hospital mortality decreased from 37 to 30.8% over 2 years (P = 0.001). The adjusted odds ratio for mortality improved the longer a site was in the Campaign, resulting in an adjusted absolute drop of 0.8% per quarter and 5.4% over 2 years (95% CI, 2.5–8.4%). Conclusions The Campaign was associated with sustained, continuous quality improvement in sepsis care. Although not necessarily cause and effect, a reduction in reported hospital mortality rates was associated with participation. The implications of this study may serve as an impetus for similar improvement efforts. Electronic supplementary material The online version of this article (doi:10.1007/s00134-009-1738-3) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of sepsis-induced cardiac dysfunction.

              To review mechanisms underlying sepsis-induced cardiac dysfunction in general and intrinsic myocardial depression in particular. MEDLINE database. Myocardial depression is a well-recognized manifestation of organ dysfunction in sepsis. Due to the lack of a generally accepted definition and the absence of large epidemiologic studies, its frequency is uncertain. Echocardiographic studies suggest that 40% to 50% of patients with prolonged septic shock develop myocardial depression, as defined by a reduced ejection fraction. Sepsis-related changes in circulating volume and vessel tone inevitably affect cardiac performance. Although the coronary circulation during sepsis is maintained or even increased, alterations in the microcirculation are likely. Mitochondrial dysfunction, another feature of sepsis-induced organ dysfunction, will also place the cardiomyocytes at risk of adenosine triphosphate depletion. However, clinical studies have demonstrated that myocardial cell death is rare and that cardiac function is fully reversible in survivors. Hence, functional rather than structural changes seem to be responsible for intrinsic myocardial depression during sepsis. The underlying mechanisms include down-regulation of beta-adrenergic receptors, depressed postreceptor signaling pathways, impaired calcium liberation from the sarcoplasmic reticulum, and impaired electromechanical coupling at the myofibrillar level. Most, if not all, of these changes are regulated by cytokines and nitric oxide. Integrative studies are needed to distinguish the hierarchy of the various mechanisms underlying septic cardiac dysfunction. As many of these changes are related to severe inflammation and not to infection per se, a better understanding of septic myocardial dysfunction may be usefully extended to other systemic inflammatory conditions encountered in the critically ill. Myocardial depression may be arguably viewed as an adaptive event by reducing energy expenditure in a situation when energy generation is limited, thereby preventing activation of cell death pathways and allowing the potential for full functional recovery.
                Bookmark

                Author and article information

                Journal
                PAT
                Pathobiology
                10.1159/issn.1015-2008
                Pathobiology
                S. Karger AG
                1015-2008
                1423-0291
                2013
                November 2012
                11 September 2012
                : 80
                : 2
                : 70-86
                Affiliations
                Laboratory of Cellular and Molecular Cardiology, Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
                Author notes
                *Prof. Marcos Rossi, Laboratory of Cellular and Molecular Cardiology, Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 (Brazil), Tel. +55 16 3602 3130, E-Mail marossi@fmrp.usp.br
                Article
                341640 Pathobiology 2013;80:70–86
                10.1159/000341640
                22986917
                85b5e405-b337-46f2-a975-02dec6d13840
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 February 2012
                : 03 July 2012
                Page count
                Figures: 7, Pages: 17
                Categories
                Review

                Oncology & Radiotherapy,Pathology,Surgery,Obstetrics & Gynecology,Pharmacology & Pharmaceutical medicine,Hematology
                Myocardial dysfunction,Verapamil,Septic cardiomyopathy,Dantrolene,Heart,Intercalated disc,Sepsis,Cadherin,Calpain,Dystrophin-glycoprotein complex

                Comments

                Comment on this article