Blog
About

11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aplicações de enzimas na síntese e na modificação de polímeros Translated title: Applications of enzymes in synthesis and modification of polymers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Translated abstract

          Enzymes are biological catalysts that offer great potential for use in the synthesis and modification of polymers, being more specific and greener than chemical catalysts. In this work, enzymes from the classes of hydrolases (lipase, cutinase and protease) and of oxidoreductases (horseradish peroxidase, manganese peroxidase and laccase) were identified as the main biocatalysts responsible for the synthesis of polymers. Biocatalysis can potentially be part of the life cycle of several polymers, including polyesters, polyurethanes, polycarbonates, polyamides, functionalized polysaccharides and polystyrene, allowing the synthesis of specialty macromolecules for fine applications and with higher added-value than commodity polymers.

          Related collections

          Most cited references 130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Towards rational design of carbon nitride photocatalysts: Identification of cyanamide "defects" as catalytically relevant sites

          The heptazine-based polymer melon (also known as graphitic carbon nitride, g-C3N4), is a promising photocatalyst for hydrogen evolution. Nonetheless, attempts to improve its inherently low activity are rarely based on rational approaches due to a lack of fundamental understanding of its mechanistic operation. Here, we employ molecular heptazine-based model catalysts to identify the cyanamide moiety as a photocatalytically relevant "defect". We exploit this knowledge for the rational design of a carbon nitride polymer populated with cyanamide groups, yielding a material with 12- and 16-times the hydrogen evolution rate and apparent quantum efficiency (400 nm), respectively, compared to the benchmark melon. Computational modelling and material characterization suggest this moiety improves co-ordination (and, in turn, charge transfer kinetics) to the platinum co-catalyst and enhances the separation of the photo-generated charge carriers. The demonstrated knowledge transfer for rational catalyst design presented here provides the conceptual framework for engineering high performance heptazine-based photocatalysts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates

            The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [AI][MII(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using variable-temperature X-ray powder diffraction measurements. While all systems show essentially the same type of thermomechanical response-irrespective of their particular structural details-the magnitude of this response is shown to be a function of AI and MII cation radii, as well as the molecular anisotropy of AI. Flexibility is maximised for large MII and small AI, while the shape of AI has implications for the direction of framework hingeing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermal and light-induced spin-crossover in salts of the heptadentate complex [tris(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine]iron(ii).

              The syntheses of [FeL][BF(4)](2).H(2)O, [FeL][ClO(4)](2).H(2)O, [FeL][NO(3)](2).CH(3)NO(2) and [FeL][CF(3)SO(3)](2) (L = tris(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine) are described. The isostructural BF(4)(-) and ClO(4)(-) salts are high-spin between 5-300 K, while the other two compounds are high-spin at room temperature but undergo gradual high-->low spin transitions upon cooling. For [FeL][NO(3)](2) this transition is centred at 139 K and proceeds to near-completeness, while for [FeL][CF(3)SO(3)](2) it is centred at 144 K and only proceeds to 50% conversion. The CF(3)SO(3)(-) salt also undergoes spin-crossover centred at 200 K in (CD(3))(2)CO solution, and exhibits dynamic inversion of its helical ligand conformation. All these compounds except the triflate salt have been crystallographically characterised, and show capped trigonal antiprismatic [6 + 1] coordination geometries. The NO(3)(-) and CF(3)SO(3)(-) salts undergo quantitative conversion to trapped, high-spin excited states upon irradiation with a green laser at 10 K (the LIESST effect; LIESST = Light-Induced Excited Spin State Trapping). The thermal stabilities of their LIESST excited states (T(LIESST) = 80-82 K) resemble those found for iron(ii) complexes of bidentate N-heterocyclic ligands. Hence, the LIESST properties of [FeL](2+) are those of a complex of three rigid bidentate domains linked by a flexible spacer, rather than of a single encapsulating podand.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                qn
                Química Nova
                Quím. Nova
                Sociedade Brasileira de Química (São Paulo )
                1678-7064
                2014
                : 37
                : 4
                : 699-708
                Affiliations
                [1 ] Petrobras Brazil
                [2 ] Petrobras Brazil
                Article
                S0100-40422014000400020
                10.5935/0100-4042.20140113

                http://creativecommons.org/licenses/by/4.0/

                Product
                Product Information: SciELO Brazil
                Categories
                CHEMISTRY, MULTIDISCIPLINARY

                General chemistry

                enzyme polymerization, biocatalysis, lipase

                Comments

                Comment on this article