7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TREATMENT WITH THE HUMANIZED CD154-SPECIFIC MONOCLONAL ANTIBODY, hu5C8, PREVENTS ACUTE REJECTION OF PRIMARY SKIN ALLOGRAFTS IN NONHUMAN PRIMATES1 :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Allogeneic skin transplantation remains a rigorous test of any immune intervention designed to prevent allograft rejection. To date, no single, clinically available immunosuppressant has been reported to induce long-term primary skin allograft survival in primates. We have previously shown that treatment with the humanized CD154-specific monoclonal antibody, humanized 5C8 (hu5C8), induces long-term renal allograft survival in nonhuman primates. In this study, we evaluated the efficacy of hu5C8 in preventing primary skin allograft rejection in rhesus monkeys. Ten rhesus monkeys were transplanted with full-thickness skin allografts mismatched at both class I and class II major histocompatibility loci. Of these, two were given no treatment, five were treated with hu5C8 alone, and three received hu5C8 combined with whole blood donor-specific transfusion (DST). All recipients also received skin autografts for comparison. Animals were followed by inspection, serial biopsy, mixed lymphocyte culture, and alloantibody determination. Treatment with hu5C8 alone or hu5C8 plus DST greatly prolonged allograft survival. Rejection occurred in the untreated group within 7 days. Mean allograft survival in the monotherapy hu5C8 group was >236 days and in the DST group was >202 days; these differences were not significant. Rejection eventually occurred in most animals. Allograft survival was not correlated with the development of T cell hyporesponsiveness in mixed lymphocyte culture. Rejection was not predicted by the development of donor-specific alloantibody. These results show that treatment with the CD154-specific monoclonal antibody, hu5C8, greatly delays the onset of acute skin allograft rejection.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways.

          The receptor-ligand pairs CD28-B7 and CD40-gp39 are essential for the initiation and amplification of T-cell-dependent immune responses. CD28-B7 interactions provide 'second signals' necessary for optimal T-cell activation and IL-2 production, whereas CD40-gp39 signals co-stimulate B-cell, macrophage, endothelial cell and T-cell activation. Nonetheless, blockade of either of these pathways alone is not sufficient to permit engraftment of highly immunogenic allografts. Here we report that simultaneous but not independent blockade of the CD28 and CD40 pathways effectively aborts T-cell clonal expansion in vitro and in vivo, promotes long-term survival of fully allogeneic skin grafts, and inhibits the development of chronic vascular rejection of primarily vascularized cardiac allografts. The requirement for simultaneous blockade of these pathways for effective inhibition of alloimmunity indicates that, although they are interrelated, the CD28 and CD40 pathways are critical independent regulators of T-cell-dependent immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates.

            CD154 is the ligand for the receptor CD40. This ligand-receptor pair mediates endothelial and antigen-presenting cell activation, and facilitates the interaction of these cells with T cells and platelets. We demonstrate here that administration of a CD154-specific monoclonal antibody (hu5C8) allows for renal allotransplantation in outbred, MHC-mismatched rhesus monkeys without acute rejection. The effect persisted for more than 10 months after therapy termination, and no additional drug was required to achieve extended graft survival. Indeed, the use of tacrolimus or chronic steroids seemed to antagonize the anti-rejection effect. Monkeys treated with antibody against CD154 remained healthy during and after therapy. The mechanism of action does not require global depletion of T or B cells. Long-term survivors lost their mixed lymphocyte reactivity in a donor-specific manner, but still formed donor-specific antibody and generated T cells that infiltrated the grafted organ without any obvious effect on graft function. Thus, therapy with antibody against CD154 is a promising agent for clinical use in human allotransplantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance.

              The alloimmune response against fully MHC-mismatched allografts, compared with immune responses to nominal antigens, entails an unusually large clonal size of alloreactive T cells. Thus, induction of peripheral allograft tolerance established in the absence of immune system ablation and reconstitution is a challenging task in transplantation. Here, we determined whether a reduction in the mass of alloreactive T cells due to apoptosis is an essential initial step for induction of stable allograft tolerance with non-lymphoablative therapy. Blocking both CD28-B7 and CD40-CD40 ligand interactions (co-stimulation blockade) inhibited proliferation of alloreactive T cells in vivo while allowing cell cycle-dependent T-cell apoptosis of proliferating T cells, with permanent engraftment of cardiac allografts but not skin allografts. Treatment with rapamycin plus co-stimulation blockade resulted in massive apoptosis of alloreactive T cells and produced stable skin allograft tolerance, a very stringent test of allograft tolerance. In contrast, treatment with cyclosporine A and co-stimulation blockade abolished T-cell proliferation and apoptosis, as well as the induction of stable allograft tolerance. Our data indicate that induction of T-cell apoptosis and peripheral allograft tolerance is prevented by blocking both signal 1 and signal 2 of T-cell activation.
                Bookmark

                Author and article information

                Journal
                Transplantation
                Transplantation
                Ovid Technologies (Wolters Kluwer Health)
                0041-1337
                2001
                November 2001
                : 72
                : 9
                : 1473-1478
                Article
                10.1097/00007890-200111150-00001
                11707732
                85c75af5-19c0-4130-abe1-1e4348cea84f
                © 2001
                History

                Comments

                Comment on this article