The impact of successful cryopreservation of spermatozoa can be found in many fields, including agriculture, laboratory animal medicine, and human assisted reproduction, providing a cost-effective and efficient method to preserve genetic material for decades. The success of any cryobiologic protocol depends critically on understanding the fundamentals that underlie the process. In this review, we summarize the biophysical fundamentals critical to much of the research in sperm cryobiology, provide a synopsis of the development of sperm cryobiology as a discipline, and present the current state and directions for future research in sperm cryobiology in the three major areas outlined above-agriculture, laboratory animal medicine, and human clinical assisted reproduction. There is much room for new research, both empiric and fundamental, in all areas, including refinement of mathematical models, optimization of cryoprotective agent addition and removal procedures for spermatozoa from many species, development of effective, efficient, and facile cryopreservation protocols and freezing containers for agricultural sperm cryopreservation, and tailoring cryopreservation protocols for individual human samples.