45
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Thioredoxin-Interacting Protein: A Potential Therapeutic Target for Treatment of Progressive Fibrosis in Diabetic Nephropathy

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the antioxidant thioredoxin, and a critical agent in the in vivo regulation of glucose. The well-described induction of TXNIP by high glucose may represent an important pathogenic trigger of complications arising in the diabetic environment, with sustained overexpression of TXNIP triggering the increased production of reactive oxygen species and collagen, both major contributors to the development of diabetic nephropathy (DN). To examine a possible therapeutic role for targeted TXNIP inhibition in DN, transgenic (mRen-2)27 rats were rendered diabetic with streptozotocin and then treated with 20 μ<smlcap>M</smlcap> TXNIP deoxyribozyme (DNAzyme) delivered continuously over 12 weeks by an implanted osmotic mini-pump. Renal injury was measured using biochemical parameters of kidney function along with histological markers of damage. Catalytic activity of TXNIP DNAzyme was determined by TXNIP gene and peptide expression in the rat kidneys. TXNIP DNAzyme localization was demonstrated with a fluorescent-labelled TXNIP DNAzyme. A panel of markers was used to assess the extent of oxidative stress and renal fibrosis including superoxide level, nitrotyrosine staining, TGF-β1, NLRP3 and collagen IV expression. Fluorescent-labelled TXNIP DNAzyme was localized to tubulo-epithelial cells, but was not identified in glomeruli or endothelial cells. Elevated renal cortical TXNIP gene and protein expression seen in kidneys of DN animals were significantly attenuated by TXNIP DNAzyme (p < 0.05). Downstream markers of TXNIP activity, particularly oxidative stress, inflammasome signalling, tubulo-interstitial fibrosis and collagen deposition, were also attenuated in the tubulo-interstitium of DN rats treated with TXNIP DNAzyme. Consistent with the identified site of action of the DNAzyme, the effects of the TXNIP inhibition were limited to the tubulo-interstitial compartment. This study supports the role of TXNIP as an important mediator of progressive tubulo-interstitial fibrosis in DN, and also supports the notion of TXNIP inhibition as a potential new therapeutic target for DN.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          A general purpose RNA-cleaving DNA enzyme

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange.

            The thioredoxin system plays an important role in maintaining a reducing environment in the cell. Recently, several thioredoxin binding partners have been identified and proposed to mediate aspects of redox signaling, but the significance of these interactions is unclear in part due to incomplete understanding of the mechanism for thioredoxin binding. Thioredoxin-interacting protein (Txnip) is critical for regulation of glucose metabolism, the only currently known function of which is to bind and inhibit thioredoxin. We explored the mechanism of the Txnip-thioredoxin interaction and present evidence that Txnip and thioredoxin form a stable disulfide-linked complex. We identified two Txnip cysteines that are important for thioredoxin binding and showed that this interaction is consistent with a disulfide exchange reaction between oxidized Txnip and reduced thioredoxin. These cysteines are not conserved in the broader family of arrestin domain-containing proteins, and we demonstrate that the thioredoxin-binding property of Txnip is unique. These data suggest that Txnip is a target of reduced thioredoxin and provide insight into the potential role of Txnip as a redox-sensitive signaling protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein.

              Increased intracellular reactive oxygen species (ROS) contribute to vascular disease and pro-atherosclerotic effects of diabetes mellitus may be mediated by oxidative stress. Several ROS-scavenging systems tightly control cellular redox balance; however, their role in hyperglycemia-induced oxidative stress is unclear. A ubiquitous antioxidative mechanism for regulating cellular redox balance is thioredoxin, a highly conserved thiol reductase that interacts with an endogenous inhibitor, thioredoxin-interacting protein (Txnip). Here we show that hyperglycemia inhibits thioredoxin ROS-scavenging function through p38 MAPK-mediated induction of Txnip. Overexpression of Txnip increased oxidative stress, while Txnip gene silencing restored thioredoxin activity in hyperglycemia. Diabetic animals exhibited increased vascular expression of Txnip and reduced thioredoxin activity, which normalized with insulin treatment. These results provide evidence for the impairment of a major ROS-scavenging system in hyperglycemia. These studies implicate reduced thioredoxin activity through interaction with Txnip as an important mechanism for vascular oxidative stress in diabetes mellitus.
                Bookmark

                Author and article information

                Journal
                NEF
                Nephron
                10.1159/issn.1660-8151
                Nephron
                S. Karger AG
                1660-8151
                2235-3186
                2015
                February 2015
                31 January 2015
                : 129
                : 2
                : 109-127
                Affiliations
                aDepartment of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic., and bDepartment of Nephrology, St. Vincent's Hospital, Fitzroy, Vic., Australia
                Author notes
                *Robyn G. Langham, Department of Nephrology, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, VIC 3065 (Australia), E-Mail rlangham@unimelb.edu.au
                Article
                368238 Nephron 2015;129:109-127
                10.1159/000368238
                25662516
                85dd4b80-ec09-4aba-9ca4-7f6902b88361
                © 2015 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 17 January 2014
                : 04 September 2014
                Page count
                Figures: 12, Tables: 1, References: 47, Pages: 19
                Categories
                Experimental Nephrology: Original Paper

                Cardiovascular Medicine,Nephrology
                Oxidative stress,TXNIP,Tubulo-interstitial fibrosis,TXNIP deoxyribozyme,Diabetic nephropathy

                Comments

                Comment on this article