6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium.

      ,
      Methods in molecular biology (Clifton, N.J.)
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A primary cultured gill epithelium from the model organism Tetraodon nigroviridis (spotted green puffer fish) has been developed for the study of claudin tight junction (TJ) proteins and their potential role in the regulation of paracellular permeability across the gills of fishes. The cultured preparation is composed of polygonal epithelial cells that exhibit TJ protein immunoreactivity around the periphery and develop a surface morphology of concentric apical microridges. There is an absence of cells exhibiting intense Na+-K+-ATPase immunoreactivity and taken together, these characteristics indicate that the epithelium is composed of gill pavement cells only. In Tetraodon, 52 genes encoding for claudin isoforms (Tncldn) have been identified and 32 of these genes are expressed in whole gill tissue. Of these genes, 12 are responsive to alterations in environmental salinity in vivo (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b). All claudin isoforms found in whole gill tissue can be found in cultured pavement cell gill epithelia with the exception of Tncldn6, -10d, and -10e. The cultured preparation is suitable for studying the "molecular machinery" of TJ proteins in fish gill pavement cells.

          Related collections

          Author and article information

          Journal
          Methods Mol. Biol.
          Methods in molecular biology (Clifton, N.J.)
          Springer Nature America, Inc
          1940-6029
          1064-3745
          2011
          : 762
          Article
          10.1007/978-1-61779-185-7_13
          21717357
          85e05d2d-14c2-47ef-b6be-4461c634db4a
          History

          Comments

          Comment on this article