21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification

      review-article
      1 , , 2 , 3 , 4 , 5 , 1
      Clinical Epigenetics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Machine learning is a sub-field of artificial intelligence, which utilises large data sets to make predictions for future events. Although most algorithms used in machine learning were developed as far back as the 1950s, the advent of big data in combination with dramatically increased computing power has spurred renewed interest in this technology over the last two decades.

          Main body

          Within the medical field, machine learning is promising in the development of assistive clinical tools for detection of e.g. cancers and prediction of disease. Recent advances in deep learning technologies, a sub-discipline of machine learning that requires less user input but more data and processing power, has provided even greater promise in assisting physicians to achieve accurate diagnoses.

          Within the fields of genetics and its sub-field epigenetics, both prime examples of complex data, machine learning methods are on the rise, as the field of personalised medicine is aiming for treatment of the individual based on their genetic and epigenetic profiles.

          Conclusion

          We now have an ever-growing number of reported epigenetic alterations in disease, and this offers a chance to increase sensitivity and specificity of future diagnostics and therapies. Currently, there are limited studies using machine learning applied to epigenetics. They pertain to a wide variety of disease states and have used mostly supervised machine learning methods.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

          Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Big data analytics in healthcare: promise and potential

            Objective To describe the promise and potential of big data analytics in healthcare. Methods The paper describes the nascent field of big data analytics in healthcare, discusses the benefits, outlines an architectural framework and methodology, describes examples reported in the literature, briefly discusses the challenges, and offers conclusions. Results The paper provides a broad overview of big data analytics for healthcare researchers and practitioners. Conclusions Big data analytics in healthcare is evolving into a promising field for providing insight from very large data sets and improving outcomes while reducing costs. Its potential is great; however there remain challenges to overcome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in medicine.

              Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
                Bookmark

                Author and article information

                Contributors
                Sebastian.Rauschert@telethonkids.org.au
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                3 April 2020
                3 April 2020
                2020
                : 12
                : 51
                Affiliations
                [1 ]GRID grid.1012.2, ISNI 0000 0004 1936 7910, Telethon Kids Institute, , University of Western Australia, ; Nedlands, Perth, Western Australia
                [2 ]School of Medicine, Notre Dame University, Fremantle, Western Australia
                [3 ]GRID grid.1012.2, ISNI 0000 0004 1936 7910, Centre for Genetic Origins of Health and Disease, , The University of Western Australia and Curtin University, ; Perth, Western Australia
                [4 ]GRID grid.1032.0, ISNI 0000 0004 0375 4078, School of Pharmacy and Biomedical Sciences, , Curtin University, ; Bentley, Western Australia
                [5 ]GRID grid.1009.8, ISNI 0000 0004 1936 826X, Menzies Institute for Medical Research, , University of Tasmania, ; Hobart, Tasmania Australia
                Article
                842
                10.1186/s13148-020-00842-4
                7118917
                32245523
                85e3ba07-2065-4844-a54b-19b004e8f3ec
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 December 2019
                : 22 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010663, H2020 European Research Council;
                Award ID: 733206
                Funded by: FundRef http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Award ID: 1053384
                Award ID: APP1142858
                Award ID: APP1142858
                Award ID: APP1142858
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Genetics
                Genetics

                Comments

                Comment on this article