2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The flavin and heme cofactor containing enzyme cellobiose dehydrogenase (CDH) is ubiquitously distributed in wood-degrading fungi. Current research provides compelling evidence that CDH is an activator for cellulolytic monooxygenases, which enhance the accessibility of crystalline cellulose surfaces for hydrolases. Such oxidative cellulose degradation contributes to the overall cellulolytic capabilities of wood decaying fungi to a large extent, and holds great potential to improve the efficiency of commercial enzyme mixtures for biomass processing and biofuel production. This review summarizes current literature with regard to the distribution, structure and physiological role of CDH in the light of recent findings.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Cellulose: fascinating biopolymer and sustainable raw material.

          As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes

            Background Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lignin biosynthesis and structure.

                Bookmark

                Author and article information

                Journal
                Die Bodenkultur: Journal of Land Management, Food and Environment
                Walter de Gruyter GmbH
                0006-5471
                September 1 2016
                September 1 2016
                : 67
                : 3
                : 145-163
                Article
                10.1515/boku-2016-0013
                85e4bfaa-49aa-4406-8fda-3cbff38368de
                © 2016

                http://creativecommons.org/licenses/by-nc-nd/3.0

                History

                Comments

                Comment on this article