5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advanced cardiac MRI techniques for evaluation of left‐sided valvular heart disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most common types of left‐sided valvular heart disease (VHD) in the Western world are aortic valve stenosis, aortic valve regurgitation, and mitral valve regurgitation. Comprehensive clinical evaluation entails both hemodynamic analysis and structural as well as functional characterization of the left ventricle. Cardiac magnetic resonance imaging (MRI) is an established diagnostic modality for assessment of left‐sided VHD and is progressively gaining ground in modern‐day clinical practice. Detailed flow visualization and quantification of flow‐related biomarkers in VHD can be obtained using 4D flow MRI, an imaging technique capable of measuring blood flow in three orthogonal directions over time. In addition, recent MRI sequences enable myocardial tissue characterization and strain analysis. In this review we discuss the emerging potential of state‐of‐the‐art MRI including 4D flow MRI, tissue mapping, and strain quantification for the diagnosis and prognosis of left‐sided VHD.

          Level of Evidence: 1

          Technical Efficacy Stage: 1

          J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:318–329.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?

          To prospectively compare the agreement of left ventricular volumes and ejection fraction by M-mode echocardiography (echo), 2D echo, radionuclide ventriculography and cardiovascular magnetic resonance performed in patients with chronic stable heart failure. It is important to know whether the results of each technique are interchangable, and thereby how the results of large studies in heart failure utilizing one technique can be applied using another. Some studies have compared cardiovascular magnetic resonance with echo or radionuclude ventriculography but few contain patients with heart failure and none have compared these techniques with the current fast breath-hold acquisition cardiovascular magnetic resonance. Fifty two patients with chronic stable heart failure taking part in the CHRISTMAS Study, underwent M-mode echo, 2D echo, radionuclude ventriculography and cardiovascular magnetic resonance within 4 weeks. The scans were analysed independently in blinded fashion by a single investigator at three core laboratories. Of the echocardiograms, 86% had sufficient image quality to obtain left ventricular ejection fraction by M-mode method, but only 69% by 2D Simpson's biplane analysis. All 52 patients tolerated the radionuclude ventriculography and cardiovascular magnetic resonance, and all these scans were analysable. The mean left ventricular ejection fraction by M-mode cube method was 39+/-16% and 29+/-15% by Teichholz M-mode method. The mean left ventricular ejection fraction by 2D echo Simpson's biplane was 31+/-10%, by radionuclude ventriculography was 24+/-9% and by cardiovascular magnetic resonance was 30+/-11. All the mean left ventricular ejection fractions by each technique were significantly different from all other techniques (P<0.001), except for cardiovascular magnetic resonance ejection fraction and 2D echo ejection fraction by Simpson's rule (P=0.23). The Bland-Altman limits of agreement encompassing four standard deviations was widest for both cardiovascular magnetic resonance vs cube M-mode echo and cardiovascular magnetic resonance vs Teichholz M-mode echo at 66% each, and was 58% for radionuclude ventriculography vs cube M-mode echo, 44% for cardiovascular magnetic resonance vs Simpson's 2D echo, 39% for radionuclide ventriculography vs Simpson's 2D echo, and smallest at 31% for cardiovascular magnetic resonance-radionuclide ventriculography. Similarly, the end-diastolic volume and end-systolic volume by 2D echo and cardiovascular magnetic resonance revealed wide limits of agreement (52 ml to 216 ml and 11 ml to 188 ml, respectively). These results suggest that ejection fraction measurements by various techniques are not interchangeable. The conclusions and recommendations of research studies in heart failure should therefore be interpreted in the context of locally available techniques. In addition, there are very wide variances in volumes and ejection fraction between techniques, which are most marked in comparisons using echocardiography. This suggests that cardiovascular magnetic resonance is the preferred technique for volume and ejection fraction estimation in heart failure patients, because of its 3D approach for non-symmetric ventricles and superior image quality. Copyright 2000 The European Society of Cardiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Asymmetric redirection of flow through the heart.

            Through cardiac looping during embryonic development, paths of flow through the mature heart have direction changes and asymmetries whose topology and functional significance remain relatively unexplored. Here we show, using magnetic resonance velocity mapping, the asymmetric redirection of streaming blood in atrial and ventricular cavities of the adult human heart, with sinuous, chirally asymmetric paths of flow through the whole. On the basis of mapped flow fields and drawings that illustrate spatial relations between flow paths, we propose that asymmetries and curvatures of the looped heart have potential fluidic and dynamic advantages. Patterns of atrial filling seem to be asymmetric in a manner that allows the momentum of inflowing streams to be redirected towards atrio-ventricular valves, and the change in direction at ventricular level is such that recoil away from ejected blood is in a direction that can enhance rather than inhibit ventriculo-atrial coupling. Chiral asymmetry might help to minimize dissipative interaction between entering, recirculating and outflowing streams. These factors might combine to allow a reciprocating, sling-like, 'morphodynamic' mode of action to come into effect when heart rate and output increase during exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type.

              Ascending aortic dilation is important in bicuspid aortic valve (BAV) disease, with increased risk of aortic dissection. We used cardiovascular MR to understand the pathophysiology better by examining the links between 3-dimensional flow abnormalities, aortic function, and aortic dilation. A total of 142 subjects underwent cardiovascular MR (mean age, 40 years; 95 with BAV, 47 healthy volunteers). Patients with BAV had predominantly abnormal right-handed helical flow in the ascending aorta, larger ascending aortas (18.3±3.3 versus 15.2±2.2 mm/m²; P<0.001), and higher rotational (helical) flow (31.7±15.8 versus 2.9±3.9 mm²/s; P<0.001), systolic flow angle (23.1°±12.5° versus 7.0°±4.6°; P<0.001), and systolic wall shear stress (0.85±0.28 versus 0.59±0.17 N/m²; P<0.001) compared with healthy volunteers. BAV with right-handed flow and right-non coronary cusp fusion (n=31) showed more severe flow abnormalities (rotational flow, 38.5±16.5 versus 27.8±12.4 mm²/s; P<0.001; systolic flow angle, 29.4°±10.9° versus 19.4°±11.4°; P<0.001; in-plane wall shear stress, 0.64±0.23 versus 0.47±0.22 N/m²; P<0.001) and larger aortas (19.5±3.4 versus 17.5±3.1 mm/m²; P<0.05) than right-left cusp fusion (n=55). Patients with BAV with normal flow patterns had similar aortic dimensions and wall shear stress to healthy volunteers and younger patients with BAV showed abnormal flow patterns but no aortic dilation, both further supporting the importance of flow pattern in the pathogenesis of aortic dilation. Aortic function measures (distensibility, aortic strain, and pulse wave velocity) were similar across all groups. Flow abnormalities may be a major contributor to aortic dilation in BAV. Fusion type affects the severity of flow abnormalities and may allow better risk prediction and selection of patients for earlier surgical intervention.
                Bookmark

                Author and article information

                Contributors
                r.n.planken@amc.uva.nl
                Journal
                J Magn Reson Imaging
                J Magn Reson Imaging
                10.1002/(ISSN)1522-2586
                JMRI
                Journal of Magnetic Resonance Imaging
                John Wiley and Sons Inc. (Hoboken )
                1053-1807
                1522-2586
                06 August 2018
                August 2018
                : 48
                : 2 ( doiID: 10.1002/jmri.v48.2 )
                : 318-329
                Affiliations
                [ 1 ] Department of Radiology and Nuclear Medicine Academic Medical Center Amsterdam the Netherlands
                [ 2 ] Department of Cardiothoracic Surgery Academic Medical Center Amsterdam the Netherlands
                [ 3 ] Department of Cardiology Academic Medical Center Amsterdam the Netherlands
                [ 4 ] Department of Radiology University Medical Center Utrecht the Netherlands
                Author notes
                [*] [* ]Address reprint requests to: R.N.P., Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands. E‐mail: r.n.planken@ 123456amc.uva.nl
                [†]

                The first two authors contributed equally to this work.

                Article
                JMRI26204
                10.1002/jmri.26204
                6667896
                30134000
                85fa8d74-fa36-4f02-9c57-a5c6db46ee04
                © 2018 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 14 February 2018
                : 19 April 2018
                Page count
                Figures: 8, Tables: 0, Pages: 12, Words: 8855
                Categories
                Review Article
                Review Article
                Custom metadata
                2.0
                jmri26204
                August 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.6.2 mode:remove_FC converted:31.07.2019

                Radiology & Imaging
                valvular heart disease,phase‐contrast mri,4d flow mri,hemodynamic imaging,tissue mapping,strain analysis

                Comments

                Comment on this article