80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SLC2A9 Is a High-Capacity Urate Transporter in Humans

      research-article
      1 , * , 1 , 2 , 2 , 1 , 3 , 3 , 4 , 1 , 1 , 1 , 1 , 1 , 1 , 5 , 6 , 6 , 7 , 8 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 15 , 15 , 16 , 16 , 3 , , 2 ,
      PLoS Medicine
      Public Library of Science
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man.

          Methods and Findings

          We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner ( K i = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size −0.12 mm Hg, 95% CI −0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size −0.03 mm Hg, 95% CI −0.39 to 0.31, p = 0.82).

          Conclusions

          This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout.

          Editors' Summary

          Background.

          Blood is continually pumped around the human body to deliver the chemicals needed to keep the body's cells alive and to take cellular waste products to the kidneys where they are filtered out of the blood and excreted in the urine. In healthy people, the levels of nutrients and waste products in serum (the liquid part of blood) fall within “normal” ranges but in ill people these levels can be very different. For example, serum uric acid (urate) levels are usually increased in people with gout. In this arthritic condition, uric acid crystallizes in the joints (often those in the big toe) and causes swelling and intense pain. Increased serum urate levels, which are also associated with high blood pressure, diabetes, and several other important conditions, can be caused by eating food that is rich in chemicals called purines (for example, liver, dried beans, and port). The body also converts its own purines into uric acid so genetic variations in the enzymes involved in purine breakdown can alter serum urate levels, as can variations in the rate of urate removal from the body by the kidneys. Urinary urate excretion is controlled by urate transporters, proteins that carry urate into and out of the kidney cells. Uricosuric drugs, which are used to treat gout, reduce serum urate levels by inhibiting a urate transporter that reabsorbs urate from urine.

          Why Was This Study Done?

          Several urate transporters have already been identified but recently, using an approach called genome-wide association scanning, scientists found that some genetic variants of a human gene called SLC2A9 are more common in people with high serum urate levels than in people with normal levels. SLC2A9 encodes a glucose transporter (a protein that helps to move the sugar glucose through cell membranes) and is highly expressed in the kidney's main urate handling site. Given these facts, could SLC2A9 (the protein made from SLC2A9) be a urate transporter as well as a glucose transporter? In this study, the researchers investigate this possibility and also ask whether genetic variations in SLC2A9 might be responsible for the association between serum urate levels and high blood pressure.

          What Did the Researchers Do and Find?

          The researchers first expressed SLC2A9 in frog eggs, a type of cell that does not have its own urate transporter. They found that urate rapidly moved into eggs expressing SLC2A9 but not into control eggs, that SLC2A9 transported urate about 50 times faster than glucose, and that glucose stimulated SLC2A9-mediated urate transport. Similarly, overexpression of SLC2A9 in human embryonic kidney cells more than doubled their urate uptake. Conversely, when the researchers used a technique called RNA interference to reduce the expression of mouse SLC2A9 in mouse cells that normally makes this protein, urate transport was reduced. Next, the researchers looked at two small parts of SLC2A9 that vary between individuals (so-called single polynucleotide polymorphisms) in nearly 900 men who had had their serum urate levels and urinary urate excretion rates measured. They found that certain genetic variations at these two sites were associated with increased serum urate levels and decreased urinary urate excretion. Finally, the researchers used a statistical technique called meta-analysis to look for an association between one of the SLC2A9 gene variants and blood pressure. In two separate meta-analyses that together involved more than 20, 000 participants in several studies, there was no association between this gene variant and blood pressure.

          What Do These Findings Mean?

          Overall, these findings indicate that SLCA9 is a high capacity urate transporter and suggest that this protein plays an important part in controlling serum urate levels. They provide confirmation that common genetic variants in SLC2A9 affect serum urate levels to a marked degree, although they do not show exactly which genetic variant is responsible for increasing serum urate levels. They also provide important new insights into how the kidneys normally handle urate and suggest ways in which this essential process may sometimes go wrong. Thus, these findings could eventually lead to new treatments for gout and possibly for other diseases that are associated with increased serum urate levels.

          Additional Information.

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050197.

          • The UK National Health Service Direct health encyclopedia provides detailed information for patients about gout

          • MedlinePlus provides links to many sources of information about gout (in English and Spanish), including “What is gout?”, an easy-to-read guide from the US National Institutes of Arthritis and Musculoskeletal and Skin Diseases

          • Wikipedia also has pages on gout, uric acid, and SCL2A9 (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)

          • The Arthritis Research Campaign also has information on gout

          Abstract

          Mark Caulfield and colleagues show that the SLC2A9 gene, which encodes a facilitative glucose transporter, is also a high-capacity urate transporter.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

          Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.

            Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.

              The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Closed off to the periplasm, a centrally located substrate-translocation pore contains two arginines at its closed end, which comprise the substrate-binding site. Upon substrate binding, the protein adopts a more compact conformation. We propose that GlpT operates by a single-binding site, alternating-access mechanism through a rocker-switch type of movement.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                plme
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                October 2008
                7 October 2008
                : 5
                : 10
                : e197
                Affiliations
                [1 ] Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
                [2 ] Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
                [3 ] Department of Obstetrics and Gynaecology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States of America
                [4 ] Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile
                [5 ] Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
                [6 ] Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
                [7 ] Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
                [8 ] Centre National de Génotypage, Evry, France
                [9 ] Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
                [10 ] Epidemiology and Public Health, University College, London, United Kingdom
                [11 ] National Heart Lung Institute and Epidemiology and Public Health, Imperial College, London, United Kingdom
                [12 ] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
                [13 ] Department of Cardiology, University of Tartu, Tartu, Estonia
                [14 ] Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
                [15 ] Cardiovascular Medicine and Epidemiology, Clinical Sciences Research Institute, University of Warwick Medical School, Clifford Bridge Road, Coventry, United Kingdom
                [16 ] Department of Clinical and Experimental Medicine, Federico II University of Naples Medical School, Naples, Italy
                Peninsula Medical School, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: m.j.caulfield@ 123456qmul.ac.uk
                Article
                08-PLME-RA-0340R3 plme-05-10-01
                10.1371/journal.pmed.0050197
                2561076
                18842065
                85fad82b-2dae-4da6-a442-e25702049725
                Copyright: © 2008 Caulfield et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 February 2008
                : 26 August 2008
                Page count
                Pages: 15
                Categories
                Research Article
                Cardiovascular Disorders
                Genetics and Genomics
                Pharmacology
                Physiology
                Fluid and Electrolyte Physiology
                Rheumatology
                Cardiovascular Medicine
                Hypertension
                Rheumatology
                Custom metadata
                Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, et al. (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5(10): e197. doi: 10.1371/journal.pmed.0050197

                Medicine
                Medicine

                Comments

                Comment on this article