12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A.

      Applied and Environmental Microbiology
      Amino Acid Sequence, Bacteriocins, genetics, isolation & purification, pharmacology, Drug Interactions, Genes, Bacterial, Lactobacillus, drug effects, metabolism, Molecular Sequence Data

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Six bacteriocinlike peptides (plantaricin A [PlnA], PlnE, PlnF, PlnJ, PlnK, and PlnN) produced by Lactobacillus plantarum C11 were detected by amino acid sequencing and mass spectrometry. Since purification to homogeneity was problematic, all six peptides were obtained by solid-phase peptide synthesis and were tested for bacteriocin activity. It was found that L. plantarum C11 produces two two-peptide bacteriocins (PlnEF and PlnJK); a strain-specific antagonistic activity was detected at nanomolar concentrations when PlnE and PlnF were combined and when PlnJ and PlnK were combined. Complementary peptides were at least 10(3) times more active when they were combined than when they were present individually, and optimal activity was obtained when the complementary peptides were present in approximately equal amounts. The interaction between complementary peptides was specific, since neither PlnE nor PlnF could complement PlnJ or PlnK, and none of these peptides could complement the peptides constituting the two-peptide bacteriocin lactococcin G. Interestingly, PlnA, which acts as an extracellular signal (pheromone) that triggers bacteriocin production, also possessed a strain-specific antagonistic activity. No bacteriocin activity could be detected for PlnN.

          Related collections

          Author and article information

          Comments

          Comment on this article