20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation ( v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L] 0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L] 0.5 = 53 and 58 mM, respectively).

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-crystallin can function as a molecular chaperone.

          J. Horwitz (1992)
          The alpha-crystallins (alpha A and alpha B) are major lens structural proteins of the vertebrate eye that are related to the small heat shock protein family. In addition, crystallins (especially alpha B) are found in many cells and organs outside the lens, and alpha B is overexpressed in several neurological disorders and in cell lines under stress conditions. Here I show that alpha-crystallin can function as a molecular chaperone. Stoichiometric amounts of alpha A and alpha B suppress thermally induced aggregation of various enzymes. In particular, alpha-crystallin is very efficient in suppressing the thermally induced aggregation of beta- and gamma-crystallins, the two other major mammalian structural lens proteins. alpha-Crystallin was also effective in preventing aggregation and in refolding guanidine hydrochloride-denatured gamma-crystallin, as judged by circular dichroism spectroscopy. My results thus indicate that alpha-crystallin refracts light and protects proteins from aggregation in the transparent eye lens and that in nonlens cells alpha-crystallin may have other functions in addition to its capacity to suppress aggregation of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ageing and vision: structure, stability and function of lens crystallins.

            The alpha-, beta- and gamma-crystallins are the major protein components of the vertebrate eye lens, alpha-crystallin as a molecular chaperone as well as a structural protein, beta- and gamma-crystallins as structural proteins. For the lens to be able to retain life-long transparency in the absence of protein turnover, the crystallins must meet not only the requirement of solubility associated with high cellular concentration but that of longevity as well. For proteins, longevity is commonly assumed to be correlated with long-term retention of native structure, which in turn can be due to inherent thermodynamic stability, efficient capture and refolding of non-native protein by chaperones, or a combination of both. Understanding how the specific interactions that confer intrinsic stability of the protein fold are combined with the stabilizing effect of protein assembly, and how the non-specific interactions and associations of the assemblies enable the generation of highly concentrated solutions, is thus of importance to understand the loss of transparency of the lens with age. Post-translational modification can have a major effect on protein stability but an emerging theme of the few studies of the effect of post-translational modification of the crystallins is one of solubility and assembly. Here we review the structure, assembly, interactions, stability and post-translational modifications of the crystallins, not only in isolation but also as part of a multi-component system. The available data are discussed in the context of the establishment, the maintenance and finally, with age, the loss of transparency of the lens. Understanding the structural basis of protein stability and interactions in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.

              Sedimentation velocity analytical ultracentrifugation is an important tool in the characterization of macromolecules and nanoparticles in solution. The sedimentation coefficient distribution c(s) of Lamm equation solutions is based on the approximation of a single, weight-average frictional coefficient of all particles, determined from the experimental data, which scales the diffusion coefficient to the sedimentation coefficient consistent with the traditional s approximately M(2/3) power law. It provides a high hydrodynamic resolution, where diffusional broadening of the sedimentation boundaries is deconvoluted from the sedimentation coefficient distribution. The approximation of a single weight-average frictional ratio is favored by several experimental factors, and usually gives good results for chemically not too dissimilar macromolecules, such as mixtures of folded proteins. In this communication, we examine an extension to a two-dimensional distribution of sedimentation coefficient and frictional ratio, c(s,f(r)), which is representative of a more general set of size-and-shape distributions, including mass-Stokes radius distributions, c(M,R(S)), and sedimentation coefficient-molar mass distributions c(s,M). We show that this can be used to determine average molar masses of macromolecules and characterize macromolecular distributions, without the approximation of any scaling relationship between hydrodynamic and thermodynamic parameters.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                10 September 2013
                : 8
                : 9
                : e74367
                Affiliations
                [1 ]Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
                [2 ]Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
                [3 ]Department of Chemical and Biological Processes Kinetics, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
                Aligarh Muslim University, India
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VAB KAM BIK. Performed the experiments: VAB DAK NAC VFM. Analyzed the data: VAB KAM DAK NAC BIK. Contributed reagents/materials/analysis tools: NBP KOM. Wrote the paper: KAM BIK. Engaged in active discussion: VAB KAM NAC BIK.

                Article
                PONE-D-12-21422
                10.1371/journal.pone.0074367
                3769246
                24058554
                8608e405-faab-4d8d-8860-ff729afbaf89
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 July 2012
                : 3 August 2013
                Page count
                Pages: 18
                Funding
                This study was funded by the Russian Foundation for Basic Research (grants 11-94-00932-a, 11-04-01271-a and 12-04-00545-a) and by the Program “Molecular and Cell Biology” of the Presidium of the Russian Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article