11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When complementary resources are required for an optimal life cycle, most animals need to move between different habitats. However, the level of connectivity between resources can vary and, hence, influence individuals’ behaviour. We show that landscape composition and configuration affect the connectivity between breeding (heathlands) and foraging habitats (extensively-grazed grasslands) of the European Nightjar (Caprimulgus europaeus), a crepuscular insectivorous bird. On a daily basis, nightjars connect breeding and foraging sites by rapidly crossing unsuitable habitats in order to exploit a higher prey biomass in foraging sites. However, low availability of foraging habitat near breeding sites and clustered landscapes greatly increase foraging distance. Birds occupying these sub-optimal breeding areas compensate for longer travels by increasing foraging duration, and their physiology shows increased stress levels. All findings suggest that landscape heterogeneity can affect population dynamics of nightjars. Therefore, we recommend an integrated management approach for this EU-protected bird species.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation.

          The concept of trade-offs is central to our understanding of life-history evolution. The underlying mechanisms, however, have been little studied. Oxidative stress results from a mismatch between the production of damaging reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects. Managing oxidative stress is likely to be a major determinant of life histories, as virtually all activities generate ROS. There is a recent burgeoning of interest in how oxidative stress is related to different components of animal performance. The emphasis to date has been on immediate or short-term effects, but there is an increasing realization that oxidative stress will influence life histories over longer time scales. The concept of oxidative stress is currently used somewhat loosely by many ecologists, and the erroneous assumption often made that dietary antioxidants are necessarily the major line of defence against ROS-induced damage. We summarize current knowledge on how oxidative stress occurs and the different methods for measuring it, and highlight where ecologists can be too simplistic in their approach. We critically review the potential role of oxidative stress in mediating life-history trade-offs, and present a framework for formulating appropriate hypotheses and guiding experimental design. We indicate throughout potentially fruitful areas for further research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trends and missing parts in the study of movement ecology.

            Movement is important to all organisms, and accordingly it is addressed in a huge number of papers in the literature. Of nearly 26,000 papers referring to movement, an estimated 34% focused on movement by measuring it or testing hypotheses about it. This enormous amount of information is difficult to review and highlights the need to assess the collective completeness of movement studies and identify gaps. We surveyed 1,000 randomly selected papers from 496 journals and compared the facets of movement studied with a suggested framework for movement ecology, consisting of internal state (motivation, physiology), motion and navigation capacities, and external factors (both the physical environment and living organisms), and links among these components. Most studies simply measured and described the movement of organisms without reference to ecological or internal factors, and the most frequently studied part of the framework was the link between external factors and motion capacity. Few studies looked at the effects on movement of navigation capacity, or internal state, and those were mainly from vertebrates. For invertebrates and plants most studies were at the population level, whereas more vertebrate studies were conducted at the individual level. Consideration of only population-level averages promulgates neglect of between-individual variation in movement, potentially hindering the study of factors controlling movement. Terminology was found to be inconsistent among taxa and subdisciplines. The gaps identified in coverage of movement studies highlight research areas that should be addressed to fully understand the ecology of movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress in ecology and evolution: lessons from avian studies.

              Although oxidative stress is a central topic in biochemical and medical research, the number of reports on its relevance in life-history studies of non-human animals is still low. Information about oxidative stress in wild birds may help describe functional interactions among the components of life-history traits. Currently available evidence suggests that oxidative stress may impart an important physiological cost on longevity, reproduction, immune response or intense physical activity. Given the gaps in our present knowledge, it is still premature to attempt to draw definitive conclusions and basic questions (e.g. how is oxidative stress generated and how do organisms cope with it?) have yet to be fully explored under natural conditions. Therefore, caution is needed in developing hypotheses or drawing general conclusions until additional data become available to perform more rigorous comparative analyses.
                Bookmark

                Author and article information

                Contributors
                ruben.evens@uhasselt.be
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 February 2018
                14 February 2018
                2018
                : 8
                : 3008
                Affiliations
                [1 ]ISNI 0000 0001 0604 5662, GRID grid.12155.32, Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Campus Diepenbeek, ; Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
                [2 ]ISNI 0000 0001 0604 5662, GRID grid.12155.32, Hasselt University, Centre for Statistics, Research Group: I-BIOSTAT, Campus Diepenbeek, ; Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
                [3 ]ISNI 0000 0001 0604 5662, GRID grid.12155.32, Hasselt University, Centre for Environmental Sciences, Research Group: Environmental Economics, Campus Diepenbeek, ; Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
                Article
                21321
                10.1038/s41598-018-21321-0
                5813100
                29445120
                86343b05-25c8-455a-957f-bb32828d0fc9
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 October 2017
                : 1 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article