74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon-like peptide 1 secreting cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND AND PURPOSE

          Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for the treatment of type 2 diabetes. Boosting secretion from the L-cell has so far not been exploited, due to our incomplete understanding of L-cell physiology. Elevation of cyclic adenosine monophosphate (cAMP) has been shown to be a strong stimulus for GLP-1 secretion and here we investigate the activities of adenylate cyclase (AC) and phosphodiesterase (PDE) isozymes likely to shape cAMP responses in L-cells.

          EXPERIMENTAL APPROACH

          Expression of AC and PDE isoforms was quantified by RT-PCR. Single cell responses to stimulation or inhibition of AC and PDE isoforms were monitored with real-time cAMP probes. GLP-1 secretion was assessed by elisa.

          KEY RESULTS

          Quantitative PCR identified expression of protein kinase C- and Ca 2+-activated ACs, corresponding with phorbolester and cytosolic Ca 2+-stimulated cAMP elevation. Inhibition of PDE2, 3 and 4 were found to stimulate GLP-1 secretion from murine L-cells in primary culture. This corresponded with cAMP elevations monitored with a plasma membrane targeted cAMP probe. Inhibition of PDE3 but not PDE2 was further shown to prevent GLP-1 secretion in response to guanylin, a peptide secreted into the gut lumen, which had not previously been implicated in L-cell secretion.

          CONCLUSIONS AND IMPLICATIONS

          Our results reveal several mechanisms shaping cAMP responses in GLP-1 secreting cells, with some of the molecular components specifically expressed in L-cells when compared with their epithelial neighbours, thus opening new strategies for targeting these cells therapeutically.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose Sensing in L Cells: A Primary Cell Study

          Summary Glucagon-like peptide-1 (GLP-1) is an enteric hormone that stimulates insulin secretion and improves glycaemia in type 2 diabetes. Although GLP-1-based treatments are clinically available, alternative strategies to increase endogenous GLP-1 release from L cells are hampered by our limited physiological understanding of this cell type. By generating transgenic mice with L cell-specific expression of a fluorescent protein, we studied the characteristics of primary L cells by electrophysiology, fluorescence calcium imaging, and expression analysis and show that single L cells are electrically excitable and glucose responsive. Sensitivity to tolbutamide and low-millimolar concentrations of glucose and α-methylglucopyranoside, assessed in single L cells and by hormone secretion from primary cultures, suggested that GLP-1 release is regulated by the activity of sodium glucose cotransporter 1 and ATP-sensitive K+ channels, consistent with their high expression levels in purified L cells by quantitative RT-PCR. These and other pathways identified using this approach will provide exciting opportunities for future physiological and therapeutic exploration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel single chain cAMP sensors for receptor-induced signal propagation.

            cAMP is a universal second messenger of many G-protein-coupled receptors and regulates a wide variety of cellular events. cAMP exerts its effects via cAMP-dependent protein kinase (PKA), cAMP-gated ion channels, and two isoforms of exchange protein directly activated by cAMP (Epac). Here we report the development of novel fluorescent indicators for cAMP based on the cAMP-binding domains of Epac and PKA. Fluorescence resonance energy transfer between variants of green fluorescent protein (enhanced cyan fluorescent protein and enhanced yellow fluorescent protein) fused directly to the cAMP-binding domains was used to analyze spatial and temporal aspects of cAMP-signaling in different cells. In contrast to previously developed PKA-based indicators, these probes are comprised of only a single binding site lacking cooperativity, catalytic properties, and interactions with other proteins and thereby allow us to easily image free intracellular cAMP and rapid signaling events. Rapid beta-adrenergic receptor-induced cAMP signals were observed to travel with high speed ( approximately 40 microm/s) throughout the entire cell body of hippocampal neurons and peritoneal macrophages. The developed indicators could be ubiquitously applied to studying cAMP, its physiological role and spatio-temporal regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy.

              Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.
                Bookmark

                Author and article information

                Journal
                Br J Pharmacol
                bph
                British Journal of Pharmacology
                Blackwell Publishing Ltd
                0007-1188
                1476-5381
                May 2011
                : 163
                : 2
                : 261-271
                Affiliations
                [1 ]simpleCambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital Cambridge, UK
                [2 ]simpleDepartment of Pharmacology, University of Cambridge Cambridge, UK
                Author notes
                Fiona M Gribble, Frank Reimann, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Box 139, Hills Road, Cambridge CB2 0XY, UK. E-mail: fmg23@ 123456cam.ac.uk ; fr222@ 123456cam.ac.uk
                [*]

                These authors contributed equally to the manuscript

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/j.1476-5381.2010.01107.x
                3087130
                21054345
                8651496e-f0a9-4ce2-82be-34c48a1f49b9
                British Journal of Pharmacology © 2011 The British Pharmacological Society
                History
                : 06 August 2010
                : 23 September 2010
                : 12 October 2010
                Categories
                Research Papers

                Pharmacology & Pharmaceutical medicine
                cyclic adenosine monophosphate,phosphodiesterase,glucagon-like peptide 1,guanylin,adenylate cyclase (ac)

                Comments

                Comment on this article