30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antibiotics and Bacterial Resistance in the 21st Century

          Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibiotics and antibiotic resistance genes in natural environments.

            The large majority of antibiotics currently used for treating infections and the antibiotic resistance genes acquired by human pathogens each have an environmental origin. Recent work indicates that the function of these elements in their environmental reservoirs may be very distinct from the "weapon-shield" role they play in clinical settings. Changes in natural ecosystems, including the release of large amounts of antimicrobials, might alter the population dynamics of microorganisms, including selection of resistance, with consequences for human health that are difficult to predict.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America.

              The ongoing explosion of antibiotic-resistant infections continues to plague global and US health care. Meanwhile, an equally alarming decline has occurred in the research and development of new antibiotics to deal with the threat. In response to this microbial "perfect storm," in 2001, the federal Interagency Task Force on Antimicrobial Resistance released the "Action Plan to Combat Antimicrobial Resistance; Part 1: Domestic" to strengthen the response in the United States. The Infectious Diseases Society of America (IDSA) followed in 2004 with its own report, "Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates, A Public Health Crisis Brews," which proposed incentives to reinvigorate pharmaceutical investment in antibiotic research and development. The IDSA's subsequent lobbying efforts led to the introduction of promising legislation in the 109 th US Congress (January 2005-December 2006). Unfortunately, the legislation was not enacted. During the 110 th Congress, the IDSA has continued to work with congressional leaders on promising legislation to address antibiotic-resistant infection. Nevertheless, despite intensive public relations and lobbying efforts, it remains unclear whether sufficiently robust legislation will be enacted. In the meantime, microbes continue to become more resistant, the antibiotic pipeline continues to diminish, and the majority of the public remains unaware of this critical situation. The result of insufficient federal funding; insufficient surveillance, prevention, and control; insufficient research and development activities; misguided regulation of antibiotics in agriculture and, in particular, for food animals; and insufficient overall coordination of US (and international) efforts could mean a literal return to the preantibiotic era for many types of infections. If we are to address the antimicrobial resistance crisis, a concerted, grassroots effort led by the medical community will be required.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                21 September 2018
                2018
                : 9
                : 2066
                Affiliations
                [1] 1Department of Biosciences, Jamia Millia Islamia , New Delhi, India
                [2] 2Department of Medical Biotechnology, Yeungnam University , Gyeongsan, South Korea
                [3] 3School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University , Rajouri, India
                Author notes

                Edited by: Zhenyu Xie, Hainan University, China

                Reviewed by: Hong-Yu Ou, Shanghai Jiao Tong University, China; Dipti Sareen, Panjab University, Chandigarh, India

                *Correspondence: Arif Tasleem Jan atasleem@ 123456gmail.com
                Qazi Mohd Rizwanul Haq haqqmr@ 123456gmail.com

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fmicb.2018.02066
                6160567
                30298054
                8662e8c5-7e2b-4610-8852-a66c3f3bd552
                Copyright © 2018 Sultan, Rahman, Jan, Siddiqui, Mondal and Haq.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 March 2018
                : 13 August 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 169, Pages: 16, Words: 12097
                Categories
                Microbiology
                Mini Review

                Microbiology & Virology
                antibiotics,bacteria,bacterial resistance,diseases,health care
                Microbiology & Virology
                antibiotics, bacteria, bacterial resistance, diseases, health care

                Comments

                Comment on this article