21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Experimental allergic encephalomyelitis (EAE) is the most commonly used experimental animal model for human multiple sclerosis (MS) that has been used so far to study the acute and remission-relapsing phases of the disease. Despite the vast literature on neuroinflammation onset and progression in EAE, important questions are still open regarding in particular the early asymptomatic phase between immunization and clinical onset.

          Methods

          In this study, we performed a time-course investigation of neuroinflammation and demyelination biomarkers in the spinal cord (SC), cerebrospinal fluid (CSF), and blood in EAE induced in dark agouti (DA) female rats compared to the controls and adjuvant-injected rats, using high-throughput technologies for gene expression and protein assays and focusing on the time-course between immunization, clinical onset (1, 5, 8 days post-immunization (DPI)), and progression (11 and 18 DPI). The expression profile of 84 genes related to T cell activation/signaling, adaptive immunity, cytokine/chemokine inflammation, demyelination, and cellular stress were analyzed in the tissue; 24 cytokines were measured in the CSF and plasma.

          Results

          The macrophage colony-stimulating factor (CSF1) was the first up-regulated protein as far as 1 DPI, not only in blood but also in CSF and SC. A treatment with GW2580, a selective CSF1R inhibitor, slowed the disease progression, significantly reduced the severity, and prevented the relapse phase. Moreover, both pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory cytokines (IL-5, IL-10, VEGF) were up-regulated starting from 8 DPI. Myelin genes were down-regulated starting from 8 DPI, especially MAL, MBP, and PMP22 while an opposite expression profile was observed for inflammation-related genes, such as CXCL11 and CXCL10.

          Conclusions

          This early cytokine and chemokine regulation indicates that novel biomarkers and therapeutic options could be explored in the asymptomatic phase of EAE. Overall, our findings provide clear evidence that CSF1R signaling regulates inflammation in EAE, supporting therapeutic targeting of CSF1R in MS.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.

          Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CSF-1 regulation of the wandering macrophage: complexity in action.

            Most tissue macrophages and osteoclasts are regulated by colony-stimulating factor-1 (CSF-1, also known as macrophage CSF). The effects of CSF-1 are mediated by the CSF-1 receptor tyrosine kinase (CSF-1R), through autophosphorylation of CSF-1R and the subsequent phosphorylation of downstream molecules. Triggering this phosphorylation cascade increases gene transcription and protein translation, and induces cytoskeletal remodeling by several signaling pathways, leading to the survival, proliferation and differentiation of target cells. CSF-1-regulated tissue macrophages are important for innate immunity and for tissue development and function. Because CSF-1 regulates the survival, proliferation and chemotaxis of macrophages and supports their activation, this factor is involved in the pathogenesis of several diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of oligodendrocyte differentiation and myelination.

              Ben Emery (2010)
              Despite the importance of myelin for the rapid conduction of action potentials, the molecular bases of oligodendrocyte differentiation and central nervous system (CNS) myelination are still incompletely understood. Recent results have greatly advanced this understanding, identifying new transcriptional regulators of myelin gene expression, elucidating vital roles for microRNAs in controlling myelination, and clarifying the extracellular signaling mechanisms that orchestrate the development of myelin. Studies have also demonstrated an unexpected level of plasticity of myelin in the adult CNS. These recent advances provide new insight into how remyelination may be stimulated in demyelinating disorders such as multiple sclerosis.
                Bookmark

                Author and article information

                Contributors
                n.borjini@chiesi.com
                mercedes.fernandez@unibo.it
                luciana.giardino@unibo.it
                laura.calza@unibo.it
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                15 November 2016
                15 November 2016
                2016
                : 13
                : 291
                Affiliations
                [1 ]Research and Development, Chiesi Farmaceutici S.p.A, Via Palermo 26/A, Parma, 43100 Italy
                [2 ]Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia I 40064 Italy
                [3 ]IRET Foundation, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
                [4 ]Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano Emilia, BO 40064 Italy
                [5 ]Department of Pharmacy and Biotechnology, University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
                Author information
                http://orcid.org/0000-0003-3729-2521
                Article
                757
                10.1186/s12974-016-0757-6
                5111339
                27846891
                8664282f-4699-4de6-b92e-5d7d86caa9e5
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 April 2016
                : 2 November 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                neuroinflammation,multiple sclerosis,experimental allergic encephalomyelitis,biomarkers,plasma,csf1

                Comments

                Comment on this article