9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-neuronal cells are not the limiting factor for the low axonal regeneration in C57BL/6J mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peripheral axonal regeneration was investigated in adult male mice of the C57BL/6J (C), BALB/cJ (B) and A/J (A) strains and in their F1 descendants using a predegenerated nerve transplantation model. Four types of transplants were performed: 1) isotransplants between animals of the C, B and A strains; 2) donors of the C strain and recipients of the C x B and C x A breeding; 3) donors of the B strain and recipients of the C x B breeding, and 4) donors of the A strain and recipients of the C x A breeding. Donors had the left sciatic nerve transected and two weeks later a segment of the distal stump was transplanted into the recipient. Four weeks after transplantation the regenerated nerves were used to determine the total number of regenerated myelinated fibers (TMF), diameter of myelinated fibers (FD) and myelin thickness (MT). The highest TMF values were obtained in the groups where C57BL/6J mice were the donors (C to F1 (C x B) = 4658 ± 304; C to F1 (C x A) = 3899 ± 198). Also, A/J grafts led to a significantly higher TMF (A to F1 (C x A) = 3933 ± 565). Additionally, isotransplant experiments showed that when the nerve is previously degenerated, C57BL/6J mice display the largest number of myelinated fibers (C to C = 3136 ± 287; B to B = 2759 ± 170, and A to A = 2835 ± 239). We also observed that when C57BL/6J was the graft donor, FD was the highest and MT did not differ significantly when compared with the other groups. These morphometric results reinforce the idea that Schwann cells and the nerve environment of C57BL/6J provide enough support to the regenerative process. In this respect, the present results support the hypothesis that the non-neuronal cells, mainly Schwann cells, present in the sciatic nerve of C57BL/6J mice are not the main limiting factor responsible for low axonal regeneration.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation.

          This study examined the role of Schwann cells and hematogenous macrophages in myelin degradation and Ia antigen expression during Wallerian degeneration of rodent sciatic nerve. To identify and distinguish between macrophages and Schwann cells we used, in addition to electron microscopy, immunocytochemical staining of teased nerve fibres and 1 microns thick cryosections. Before the appearance of adherent macrophages the myelin sheath fragmented into ovoids, small whorls of myelin debris appeared within Schwann cell cytoplasm and the Schwann cell displayed numerous lipid droplets. However, at least in large fibres most myelin degradation and removal was accomplished or assisted by macrophages, identified by their expression of the ED1 marker. These cells began entering the nerve from blood vessels by day 2, migrated to degenerating nerve fibres and adhered to nerve fibres in the regions of the ovoids. There they penetrated the Schwann cell basal lamina to occupy an intratubal position and phagocytose myelin. During Wallerian degeneration a subpopulation of ED1-positive monocytes/macrophages expressed Ia antigen; Schwann cells were Ia-negative. Ia expression by monocytes/macrophages appeared to be a transient event and was not seen in post-phagocytic macrophages, as indicated by the fact that ED1-positive phagocytes with large vacuoles were Ia-negative. Our data show that both Schwann cells and macrophages play important roles in degrading and removing myelin during Wallerian degeneration. The expression of Ia antigen during Wallerian degeneration indicates that Ia expression need not necessarily reflect specific immune events but in some instances can represent a nonspecific response to PNS damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA

            Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)- like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trembler mouse carries a point mutation in a myelin gene.

              The autosomal dominant trembler mutation (Tr), maps to mouse chromosome 11 (ref. 2) and manifests as a Schwann-cell defect characterized by severe hypomyelination and continuing Schwann-cell proliferation throughout life. Affected animals move clumsily and develop tremor and transient seizures at a young age. We have recently described a potentially growth-regulating myelin protein, peripheral myelin protein-22 (PMP-22; refs 7, 8), which is expressed by Schwann cells and found in peripheral myelin. We now report the assignment of the gene for PMP-22 to mouse chromosome 11. Cloning and sequencing of PMP-22 complementary DNAs from inbred Tr mice reveals a point mutation that substitutes an aspartic acid residue for a glycine in a putative membrane-associated domain of the PMP-22 protein. Our results identify the PMP-22 gene as a likely candidate for the mouse trembler locus and will encourage the search for mutations in the corresponding human gene in pedigrees with hypertrophic neuropathies such as Charcot-Marie-Tooth and Dejerine-Sottas diseases (hereditary motor and sensory neuropathies I and III).
                Bookmark

                Author and article information

                Journal
                bjmbr
                Brazilian Journal of Medical and Biological Research
                Braz J Med Biol Res
                Associação Brasileira de Divulgação Científica (Ribeirão Preto, SP, Brazil )
                0100-879X
                1414-431X
                December 2000
                : 33
                : 12
                : 1467-1475
                Affiliations
                [02] Campinas SP orgnameUniversidade Estadual de Campinas orgdiv1Departamento de Fisiologia e Biofísica Brasil
                [01] orgnameUniversidade Estadual de Campinas orgdiv1Departamento de Anatomia
                Article
                S0100-879X2000001200011 S0100-879X(00)03301211
                10.1590/S0100-879X2000001200011
                8666f133-c08b-4255-a5f4-3c94e4f474f8

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 03 April 2000
                : 14 August 2000
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 40, Pages: 9
                Product

                SciELO Brazil

                Categories
                Neurosciences and behavior

                tubulization,isogenic mice,nerve regeneration,nerve transplantation,Schwann cells

                Comments

                Comment on this article