10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Acid–base and electrolyte abnormalities in heart failure: pathophysiology and implications

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrolyte and acid–base abnormalities are a frequent and potentially dangerous complication in subjects with congestive heart failure. This may be due either to the pathophysiological alterations present in the heart failure state leading to neurohumoral activation (stimulation of the renin–angiotensin–aldosterone system, sympathoadrenergic stimulation), or to the adverse events of therapy with diuretics, cardiac glycosides, and ACE inhibitors. Subjects with heart failure may show hyponatremia, magnesium, and potassium deficiencies; the latter two play a pivotal role in the development of cardiac arrhythmias. The early identification of these alterations and the knowledge of the pathophysiological mechanisms are very useful for the management of these patients.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiorenal syndrome.

          The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between serum phosphate level and cardiovascular event rate in people with coronary disease.

            Higher levels of serum phosphate are associated with adverse cardiovascular outcomes, especially in the setting of overt hyperphosphatemia. Given the biological importance of phosphorus, it is plausible that higher levels of serum phosphate within the normal range may also be associated with adverse outcomes. We performed a post hoc analysis of data from the Cholesterol And Recurrent Events (CARE) study. Baseline serum phosphate levels were measured in 4127 fasting participants who were randomized to receive pravastatin 40 mg daily or placebo and followed up for a median of 59.7 months. We used Cox proportional-hazards models to examine the association between serum phosphate and adverse clinical outcomes after adjustment for potential confounders. During nearly 60 months of follow-up, 375 participants died. A significant association was noted between baseline serum phosphate level and the age-, race-, and sex-adjusted risk of all-cause death (hazard ratio per 1 mg/dL, 1.27; 95% confidence interval, 1.02 to 1.58). After categorization based on baseline phosphate level ( or =4 mg/dL) and further adjustment, a graded independent relation between phosphate and death was observed (P for trend=0.03). For instance, participants with serum phosphate > or =3.5 mg/dL had an adjusted hazard ratio for death of 1.27 (95% confidence interval, 1.02 to 1.59) compared with those with serum phosphate of <3.5 mg/dL. Higher levels of serum phosphate were also associated with increased risk of new heart failure, myocardial infarction, and the composite of coronary death or nonfatal myocardial infarction, but not the risk of stroke. We found a graded independent relation between higher levels of serum phosphate and the risk of death and cardiovascular events in people with prior myocardial infarction, most of whom had serum phosphate levels within the normal range. Given the ready availability and low cost of serum phosphate assays, this finding may prove clinically useful.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective Study of Heart Rate Variability and Mortality in Chronic Heart Failure: Results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart)

              Patients with chronic heart failure (CHF) have a continuing high mortality. Autonomic dysfunction may play an important role in the pathophysiology of cardiac death in CHF. UK-HEART examined the value of heart rate variability (HRV) measures as independent predictors of death in CHF. In a prospective study powered for mortality, we recruited 433 outpatients 62+/-9.6 years old with CHF (NYHA functional class I to III; mean ejection fraction, 0.41+/-0.17). Time-domain HRV indices and conventional prognostic indicators were related to death by multivariate analysis. During 482+/-161 days of follow-up, cardiothoracic ratio, SDNN, left ventricular end-systolic diameter, and serum sodium were significant predictors of all-cause mortality. The risk ratio for a 41.2-ms decrease in SDNN was 1.62 (95% CI, 1.16 to 2.44). The annual mortality rate for the study population in SDNN subgroups was 5.5% for >100 ms, 12.7% for 50 to 100 ms, and 51.4% for <50 ms. SDNN, creatinine, and serum sodium were related to progressive heart failure death. Cardiothoracic ratio, left ventricular end-diastolic diameter, the presence of nonsustained ventricular tachycardia, and serum potassium were related to sudden cardiac death. A reduction in SDNN was the most powerful predictor of the risk of death due to progressive heart failure. CHF is associated with autonomic dysfunction, which can be quantified by measuring HRV. A reduction in SDNN identifies patients at high risk of death and is a better predictor of death due to progressive heart failure than other conventional clinical measurements. High-risk subgroups identified by this measurement are candidates for additional therapy after prescription of an ACE inhibitor.
                Bookmark

                Author and article information

                Contributors
                +39-091-655-4406 , ursocat@gmail.com
                Journal
                Heart Fail Rev
                Heart Fail Rev
                Heart Failure Reviews
                Springer US (New York )
                1382-4147
                1573-7322
                28 March 2015
                28 March 2015
                2015
                : 20
                : 4
                : 493-503
                Affiliations
                Dipartimento Biomedico di Medicina Interna e Specialistica, Universitá di Palermo, 90127 Palermo, Italy
                Article
                9482
                10.1007/s10741-015-9482-y
                4464645
                25820346
                8668e256-0abb-4e2c-a49b-0ef6a718d7d5
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media New York 2015

                Cardiovascular Medicine
                acid–base disturbances,congestive heart failure,electrolyte abnormalities

                Comments

                Comment on this article